For the selected transcription factor and species, the list of curated binding sites
in the database are displayed below. Gene regulation diagrams show binding sites, positively-regulated genes,
negatively-regulated genes,
both positively and negatively regulated
genes, genes with unspecified type of
regulation.
DNA-arrays (or DNA-chips or microarrays) are flat slabs of glass, silicon or plastic onto which thousands of multiple short single-stranded (ss) DNA sequences (corresponding to small regions of a genome) have been attached. After performing a mRNA extraction in induced and non-induced cells, the mRNA is again reverse transcribed, but here the reaction is tweaked, so that the emerging cDNA contains nucleotides marked with different fluorophores for controls and experiment. Targets will hybridize by base-pairing with those probes that resemble them the most. The array can then be stimulated by a laser and scanned for fluorescence at two different wavelengths (control and induced). The ratio or log-ratio between the two fluorescence intensities corresponds to the induction level.
Once the binding motif for a TF is known, this motif (which essentially defines a pattern) can be used to scan sequences in order to search for putative TF-binding site. This is useful, for instance, when trying to identify TF-binding site in ChIP-chip data. Searching for TF-binding site can be done in numerous ways. The most basic method is consensus search, in sequences are scored according to how many mismatches they have with the consensus sequence for the motif. A more elaborate way of searching involves using regular expressions, which allow to search for more loosely defined motifs [e.g. C(C/G)AT]. Common algorithms for this type of search include Pattern Locator and the DNA Pattern Find method of the SMS2 suite, but also some word processors. Finally, the mainstream way of conducting TF-binding site search is through the use of position-specific scoring matrices, which basically count the occurrences of each base at each position of the motif and use the inferred frequencies to score candidate sites. Algorithms in this last category include TFSEARCH, FITOM, CONSITE, TESS and MatInspector.
DNA-arrays (or DNA-chips or microarrays) are flat slabs of glass, silicon or plastic onto which thousands of multiple short single-stranded (ss) DNA sequences (corresponding to small regions of a genome) have been attached. After performing a mRNA extraction in induced and non-induced cells, the mRNA is again reverse transcribed, but here the reaction is tweaked, so that the emerging cDNA contains nucleotides marked with different fluorophores for controls and experiment. Targets will hybridize by base-pairing with those probes that resemble them the most. The array can then be stimulated by a laser and scanned for fluorescence at two different wavelengths (control and induced). The ratio or log-ratio between the two fluorescence intensities corresponds to the induction level.
Once the binding motif for a TF is known, this motif (which essentially defines a pattern) can be used to scan sequences in order to search for putative TF-binding site. This is useful, for instance, when trying to identify TF-binding site in ChIP-chip data. Searching for TF-binding site can be done in numerous ways. The most basic method is consensus search, in sequences are scored according to how many mismatches they have with the consensus sequence for the motif. A more elaborate way of searching involves using regular expressions, which allow to search for more loosely defined motifs [e.g. C(C/G)AT]. Common algorithms for this type of search include Pattern Locator and the DNA Pattern Find method of the SMS2 suite, but also some word processors. Finally, the mainstream way of conducting TF-binding site search is through the use of position-specific scoring matrices, which basically count the occurrences of each base at each position of the motif and use the inferred frequencies to score candidate sites. Algorithms in this last category include TFSEARCH, FITOM, CONSITE, TESS and MatInspector.
DNA-arrays (or DNA-chips or microarrays) are flat slabs of glass, silicon or plastic onto which thousands of multiple short single-stranded (ss) DNA sequences (corresponding to small regions of a genome) have been attached. After performing a mRNA extraction in induced and non-induced cells, the mRNA is again reverse transcribed, but here the reaction is tweaked, so that the emerging cDNA contains nucleotides marked with different fluorophores for controls and experiment. Targets will hybridize by base-pairing with those probes that resemble them the most. The array can then be stimulated by a laser and scanned for fluorescence at two different wavelengths (control and induced). The ratio or log-ratio between the two fluorescence intensities corresponds to the induction level.
Once the binding motif for a TF is known, this motif (which essentially defines a pattern) can be used to scan sequences in order to search for putative TF-binding site. This is useful, for instance, when trying to identify TF-binding site in ChIP-chip data. Searching for TF-binding site can be done in numerous ways. The most basic method is consensus search, in sequences are scored according to how many mismatches they have with the consensus sequence for the motif. A more elaborate way of searching involves using regular expressions, which allow to search for more loosely defined motifs [e.g. C(C/G)AT]. Common algorithms for this type of search include Pattern Locator and the DNA Pattern Find method of the SMS2 suite, but also some word processors. Finally, the mainstream way of conducting TF-binding site search is through the use of position-specific scoring matrices, which basically count the occurrences of each base at each position of the motif and use the inferred frequencies to score candidate sites. Algorithms in this last category include TFSEARCH, FITOM, CONSITE, TESS and MatInspector.
DNA-arrays (or DNA-chips or microarrays) are flat slabs of glass, silicon or plastic onto which thousands of multiple short single-stranded (ss) DNA sequences (corresponding to small regions of a genome) have been attached. After performing a mRNA extraction in induced and non-induced cells, the mRNA is again reverse transcribed, but here the reaction is tweaked, so that the emerging cDNA contains nucleotides marked with different fluorophores for controls and experiment. Targets will hybridize by base-pairing with those probes that resemble them the most. The array can then be stimulated by a laser and scanned for fluorescence at two different wavelengths (control and induced). The ratio or log-ratio between the two fluorescence intensities corresponds to the induction level.
Once the binding motif for a TF is known, this motif (which essentially defines a pattern) can be used to scan sequences in order to search for putative TF-binding site. This is useful, for instance, when trying to identify TF-binding site in ChIP-chip data. Searching for TF-binding site can be done in numerous ways. The most basic method is consensus search, in sequences are scored according to how many mismatches they have with the consensus sequence for the motif. A more elaborate way of searching involves using regular expressions, which allow to search for more loosely defined motifs [e.g. C(C/G)AT]. Common algorithms for this type of search include Pattern Locator and the DNA Pattern Find method of the SMS2 suite, but also some word processors. Finally, the mainstream way of conducting TF-binding site search is through the use of position-specific scoring matrices, which basically count the occurrences of each base at each position of the motif and use the inferred frequencies to score candidate sites. Algorithms in this last category include TFSEARCH, FITOM, CONSITE, TESS and MatInspector.
DNA-arrays (or DNA-chips or microarrays) are flat slabs of glass, silicon or plastic onto which thousands of multiple short single-stranded (ss) DNA sequences (corresponding to small regions of a genome) have been attached. After performing a mRNA extraction in induced and non-induced cells, the mRNA is again reverse transcribed, but here the reaction is tweaked, so that the emerging cDNA contains nucleotides marked with different fluorophores for controls and experiment. Targets will hybridize by base-pairing with those probes that resemble them the most. The array can then be stimulated by a laser and scanned for fluorescence at two different wavelengths (control and induced). The ratio or log-ratio between the two fluorescence intensities corresponds to the induction level.
Once the binding motif for a TF is known, this motif (which essentially defines a pattern) can be used to scan sequences in order to search for putative TF-binding site. This is useful, for instance, when trying to identify TF-binding site in ChIP-chip data. Searching for TF-binding site can be done in numerous ways. The most basic method is consensus search, in sequences are scored according to how many mismatches they have with the consensus sequence for the motif. A more elaborate way of searching involves using regular expressions, which allow to search for more loosely defined motifs [e.g. C(C/G)AT]. Common algorithms for this type of search include Pattern Locator and the DNA Pattern Find method of the SMS2 suite, but also some word processors. Finally, the mainstream way of conducting TF-binding site search is through the use of position-specific scoring matrices, which basically count the occurrences of each base at each position of the motif and use the inferred frequencies to score candidate sites. Algorithms in this last category include TFSEARCH, FITOM, CONSITE, TESS and MatInspector.
DNA-arrays (or DNA-chips or microarrays) are flat slabs of glass, silicon or plastic onto which thousands of multiple short single-stranded (ss) DNA sequences (corresponding to small regions of a genome) have been attached. After performing a mRNA extraction in induced and non-induced cells, the mRNA is again reverse transcribed, but here the reaction is tweaked, so that the emerging cDNA contains nucleotides marked with different fluorophores for controls and experiment. Targets will hybridize by base-pairing with those probes that resemble them the most. The array can then be stimulated by a laser and scanned for fluorescence at two different wavelengths (control and induced). The ratio or log-ratio between the two fluorescence intensities corresponds to the induction level.
Once the binding motif for a TF is known, this motif (which essentially defines a pattern) can be used to scan sequences in order to search for putative TF-binding site. This is useful, for instance, when trying to identify TF-binding site in ChIP-chip data. Searching for TF-binding site can be done in numerous ways. The most basic method is consensus search, in sequences are scored according to how many mismatches they have with the consensus sequence for the motif. A more elaborate way of searching involves using regular expressions, which allow to search for more loosely defined motifs [e.g. C(C/G)AT]. Common algorithms for this type of search include Pattern Locator and the DNA Pattern Find method of the SMS2 suite, but also some word processors. Finally, the mainstream way of conducting TF-binding site search is through the use of position-specific scoring matrices, which basically count the occurrences of each base at each position of the motif and use the inferred frequencies to score candidate sites. Algorithms in this last category include TFSEARCH, FITOM, CONSITE, TESS and MatInspector.
DNA-arrays (or DNA-chips or microarrays) are flat slabs of glass, silicon or plastic onto which thousands of multiple short single-stranded (ss) DNA sequences (corresponding to small regions of a genome) have been attached. After performing a mRNA extraction in induced and non-induced cells, the mRNA is again reverse transcribed, but here the reaction is tweaked, so that the emerging cDNA contains nucleotides marked with different fluorophores for controls and experiment. Targets will hybridize by base-pairing with those probes that resemble them the most. The array can then be stimulated by a laser and scanned for fluorescence at two different wavelengths (control and induced). The ratio or log-ratio between the two fluorescence intensities corresponds to the induction level.
Once the binding motif for a TF is known, this motif (which essentially defines a pattern) can be used to scan sequences in order to search for putative TF-binding site. This is useful, for instance, when trying to identify TF-binding site in ChIP-chip data. Searching for TF-binding site can be done in numerous ways. The most basic method is consensus search, in sequences are scored according to how many mismatches they have with the consensus sequence for the motif. A more elaborate way of searching involves using regular expressions, which allow to search for more loosely defined motifs [e.g. C(C/G)AT]. Common algorithms for this type of search include Pattern Locator and the DNA Pattern Find method of the SMS2 suite, but also some word processors. Finally, the mainstream way of conducting TF-binding site search is through the use of position-specific scoring matrices, which basically count the occurrences of each base at each position of the motif and use the inferred frequencies to score candidate sites. Algorithms in this last category include TFSEARCH, FITOM, CONSITE, TESS and MatInspector.
DNA-arrays (or DNA-chips or microarrays) are flat slabs of glass, silicon or plastic onto which thousands of multiple short single-stranded (ss) DNA sequences (corresponding to small regions of a genome) have been attached. After performing a mRNA extraction in induced and non-induced cells, the mRNA is again reverse transcribed, but here the reaction is tweaked, so that the emerging cDNA contains nucleotides marked with different fluorophores for controls and experiment. Targets will hybridize by base-pairing with those probes that resemble them the most. The array can then be stimulated by a laser and scanned for fluorescence at two different wavelengths (control and induced). The ratio or log-ratio between the two fluorescence intensities corresponds to the induction level.
Once the binding motif for a TF is known, this motif (which essentially defines a pattern) can be used to scan sequences in order to search for putative TF-binding site. This is useful, for instance, when trying to identify TF-binding site in ChIP-chip data. Searching for TF-binding site can be done in numerous ways. The most basic method is consensus search, in sequences are scored according to how many mismatches they have with the consensus sequence for the motif. A more elaborate way of searching involves using regular expressions, which allow to search for more loosely defined motifs [e.g. C(C/G)AT]. Common algorithms for this type of search include Pattern Locator and the DNA Pattern Find method of the SMS2 suite, but also some word processors. Finally, the mainstream way of conducting TF-binding site search is through the use of position-specific scoring matrices, which basically count the occurrences of each base at each position of the motif and use the inferred frequencies to score candidate sites. Algorithms in this last category include TFSEARCH, FITOM, CONSITE, TESS and MatInspector.
DNA-arrays (or DNA-chips or microarrays) are flat slabs of glass, silicon or plastic onto which thousands of multiple short single-stranded (ss) DNA sequences (corresponding to small regions of a genome) have been attached. After performing a mRNA extraction in induced and non-induced cells, the mRNA is again reverse transcribed, but here the reaction is tweaked, so that the emerging cDNA contains nucleotides marked with different fluorophores for controls and experiment. Targets will hybridize by base-pairing with those probes that resemble them the most. The array can then be stimulated by a laser and scanned for fluorescence at two different wavelengths (control and induced). The ratio or log-ratio between the two fluorescence intensities corresponds to the induction level.
Once the binding motif for a TF is known, this motif (which essentially defines a pattern) can be used to scan sequences in order to search for putative TF-binding site. This is useful, for instance, when trying to identify TF-binding site in ChIP-chip data. Searching for TF-binding site can be done in numerous ways. The most basic method is consensus search, in sequences are scored according to how many mismatches they have with the consensus sequence for the motif. A more elaborate way of searching involves using regular expressions, which allow to search for more loosely defined motifs [e.g. C(C/G)AT]. Common algorithms for this type of search include Pattern Locator and the DNA Pattern Find method of the SMS2 suite, but also some word processors. Finally, the mainstream way of conducting TF-binding site search is through the use of position-specific scoring matrices, which basically count the occurrences of each base at each position of the motif and use the inferred frequencies to score candidate sites. Algorithms in this last category include TFSEARCH, FITOM, CONSITE, TESS and MatInspector.
DNA-arrays (or DNA-chips or microarrays) are flat slabs of glass, silicon or plastic onto which thousands of multiple short single-stranded (ss) DNA sequences (corresponding to small regions of a genome) have been attached. After performing a mRNA extraction in induced and non-induced cells, the mRNA is again reverse transcribed, but here the reaction is tweaked, so that the emerging cDNA contains nucleotides marked with different fluorophores for controls and experiment. Targets will hybridize by base-pairing with those probes that resemble them the most. The array can then be stimulated by a laser and scanned for fluorescence at two different wavelengths (control and induced). The ratio or log-ratio between the two fluorescence intensities corresponds to the induction level.
Once the binding motif for a TF is known, this motif (which essentially defines a pattern) can be used to scan sequences in order to search for putative TF-binding site. This is useful, for instance, when trying to identify TF-binding site in ChIP-chip data. Searching for TF-binding site can be done in numerous ways. The most basic method is consensus search, in sequences are scored according to how many mismatches they have with the consensus sequence for the motif. A more elaborate way of searching involves using regular expressions, which allow to search for more loosely defined motifs [e.g. C(C/G)AT]. Common algorithms for this type of search include Pattern Locator and the DNA Pattern Find method of the SMS2 suite, but also some word processors. Finally, the mainstream way of conducting TF-binding site search is through the use of position-specific scoring matrices, which basically count the occurrences of each base at each position of the motif and use the inferred frequencies to score candidate sites. Algorithms in this last category include TFSEARCH, FITOM, CONSITE, TESS and MatInspector.
DNA-arrays (or DNA-chips or microarrays) are flat slabs of glass, silicon or plastic onto which thousands of multiple short single-stranded (ss) DNA sequences (corresponding to small regions of a genome) have been attached. After performing a mRNA extraction in induced and non-induced cells, the mRNA is again reverse transcribed, but here the reaction is tweaked, so that the emerging cDNA contains nucleotides marked with different fluorophores for controls and experiment. Targets will hybridize by base-pairing with those probes that resemble them the most. The array can then be stimulated by a laser and scanned for fluorescence at two different wavelengths (control and induced). The ratio or log-ratio between the two fluorescence intensities corresponds to the induction level.
Once the binding motif for a TF is known, this motif (which essentially defines a pattern) can be used to scan sequences in order to search for putative TF-binding site. This is useful, for instance, when trying to identify TF-binding site in ChIP-chip data. Searching for TF-binding site can be done in numerous ways. The most basic method is consensus search, in sequences are scored according to how many mismatches they have with the consensus sequence for the motif. A more elaborate way of searching involves using regular expressions, which allow to search for more loosely defined motifs [e.g. C(C/G)AT]. Common algorithms for this type of search include Pattern Locator and the DNA Pattern Find method of the SMS2 suite, but also some word processors. Finally, the mainstream way of conducting TF-binding site search is through the use of position-specific scoring matrices, which basically count the occurrences of each base at each position of the motif and use the inferred frequencies to score candidate sites. Algorithms in this last category include TFSEARCH, FITOM, CONSITE, TESS and MatInspector.
All binding sites in split view are combined and a sequence logo is generated. Note that it
may contain binding site sequences from different transcription factors and different
species. To see individiual sequence logos and curation details go to split view.