Genome-wide identification of in vivo binding sites of GlxR, a cyclic AMP receptor protein-type regulator in Corynebacterium glutamicum.;Toyoda K, Teramoto H, Inui M, Yukawa H;Journal of bacteriology 2011 Aug;
193(16):4123-33
[21665967]
GlxR binding sites were identified in vivo by ChIP-chip analyses. A MEME alignment of the upstream sequences of the genes with enrichment factor greater than 1 produced a GlxR binding motif. EMSAs of representative in vivo GlxR-binding promoter regions detected by ChIP-chip confirmed that GlxR binds to these promoters. Site-directed mutagenesis with EMSA showed that changing the most conserved bases abolished the GlxR binding. Each of the promoter region tested by EMSA was used in lacZ reporter assays to further validate GlxR-mediated expression.
ChIP assay conditions
Exponentially growing C. glutamicum cultures (35 ml) at an optical density at 610 nm (OD610) of up to 2.5 were treated with formaldehyde (at a final concentration of 1%) and incubated for 20 min at room temperature. The cross-linking was quenched by addition of glycine (at a final concentration of 125 mM) and incubation for 10 min at room temperature.
ChIP notes
Cells were then collected by centrifugation, washed twice with Tris-buffered saline (20 mM Tris-HCl [pH 7.5], 150 mM NaCl), and stored at −80°C. Pellets were resuspended in 2 ml IP buffer (50 mM HEPES-KOH [pH 7.5], 150 mM NaCl, 1 mM EDTA, 1% Triton X-100, 0.1% sodium deoxycholate, 0.1% SDS, Roche Antiprotease mini). The cells were mechanically disrupted using a FastPrep FP120 instrument (Bio 101, Thermo Savant) as described previously (78), and the supernatant after centrifugation was sonicated on ice to shear DNA to an average size of 600 to 1,000 bp. A 50-μl fraction of the supernatant was saved for later analysis (reference DNA). The remainder was subjected to immunoprecipitation with 100 μl of magnetic beads coated with protein G (Invitrogen), which was coupled to the monoclonal anti-Strep-tag II antibody (Qiagen). The mixture was incubated overnight on a rotating platform at 4°C. The beads were washed once with IP buffer, twice with IP buffer containing 400 mM NaCl, eight times with radioimmunoprecipitation assay (RIPA) buffer (50 mM HEPES [pH 7.6], 500 mM LiCl, 1 mM EDTA, 1% NP-40, 0.7% sodium deoxycholate), and twice with Tris-EDTA (TE) buffer with 50 mM NaCl. Immunoprecipitated complexes were eluted from the beads by treatment with 210 μl elution buffer (50 mM Tris-HCl [pH 8.0], 10 mM EDTA, 1% SDS) at 65°C for 20 min. Cross-links of immunoprecipitated samples and of total DNA samples were reversed by incubation overnight at 65°C. Samples were then treated with RNase A and proteinase K for 2 h at 55°C. DNA was extracted with phenol-chloroform and purified with a QIAquick PCR purification minElute kit (Qiagen). DNA samples were blunted with T4 DNA polymerase, ligated to linkers, and amplified by PCR. Amplified DNAs from reference DNA and immunoprecipitated DNA were differentially labeled with Cy3 and Cy5, respectively, by using a CGH labeling kit (Invitrogen) according to the manufacturer's instructions. Hybridization to microarrays and array scanning were done as described previously (38). The arrays were spotted with 3,056 duplicate PCR products corresponding to C. glutamicum open reading frames (ORFs) (38). Data were normalized so that the mean of the Cy5/Cy3 intensity ratio of all of the features except the flagged ones was equal to 1, using GenePix 5.0 software. The enrichment factor for a given gene was calculated as the log2 ratio of hybridization of immunoprecipitated DNA to reference DNA. The entire procedure was carried out at least three times, and the results were averaged. A result was considered significant when the mean value was higher than 0.5 and with an associated P value of lower than 0.05.
Regulated genes for each binding site are displayed below. Gene regulation diagrams
show binding sites, positively-regulated genes,
negatively-regulated genes,
both positively and negatively regulated
genes, genes with unspecified type of regulation.
For each indvidual site, experimental techniques used to determine the site are also given.
The principle of ChIP-chip is simple. The first step is to cross-link the protein-DNA complex. This is done using a fixating agent, such as formaldehyde. The cross-linking can later be reversed with heat. Cross-linking kills the cell, giving a snapshot of the bound TF at a given time. The cell is then lysed, the DNA sheared by sonication and the chromatin[2] (TF-DNA complexes) is pulled down using an antibody (i.e. immunoprecipitated). If an antibody for the TF is available, then it is used; otherwise, the TF is tagged with an epitope targeted by commercially available antibodies (the latter option is cheaper, but runs the risk of altering the TF's functionality). Cross-linking is then reversed to free the bound DNA, which is then amplified, labeled with a fluorophore and dumped onto a DNA-array. The scanned array reveals the genomic regions bound by the TF. The resolution is around ~500 bp as a result of the sonication step.
In motif discovery, we are given a set of sequences that we suspect harbor binding sites for a given transcription factor. A typical scenario is data coming from expression experiments, in which we wish to analyze the promoter region of a bunch of genes that are up- or down-regulated under some condition. The goal of motif discovery is to detect the transcription factor binding motif (i.e. the sequence “pattern” bound by the TF), by assuming that it will be overrepresented in our sample of sequences. There are different strategies to accomplish this, but the standard approach uses expectation maximization (EM) and in particular Gibbs sampling or greedy search. Popular algorithms for motif discovery are MEME, Gibbs Motif Sampler or CONSENSUS. More recently, motif discovery algorithms that make use of phylogenetic foot-printing (the idea that TF-binding site will be conserved in the promoter sequences for the same gene in different species) have become available. These are not usually applied to complement experimental work, but can be used to provide a starting point for it. Popular algorithms include FootPrinter and PhyloGibbs.
The principle of ChIP-chip is simple. The first step is to cross-link the protein-DNA complex. This is done using a fixating agent, such as formaldehyde. The cross-linking can later be reversed with heat. Cross-linking kills the cell, giving a snapshot of the bound TF at a given time. The cell is then lysed, the DNA sheared by sonication and the chromatin[2] (TF-DNA complexes) is pulled down using an antibody (i.e. immunoprecipitated). If an antibody for the TF is available, then it is used; otherwise, the TF is tagged with an epitope targeted by commercially available antibodies (the latter option is cheaper, but runs the risk of altering the TF's functionality). Cross-linking is then reversed to free the bound DNA, which is then amplified, labeled with a fluorophore and dumped onto a DNA-array. The scanned array reveals the genomic regions bound by the TF. The resolution is around ~500 bp as a result of the sonication step.
In motif discovery, we are given a set of sequences that we suspect harbor binding sites for a given transcription factor. A typical scenario is data coming from expression experiments, in which we wish to analyze the promoter region of a bunch of genes that are up- or down-regulated under some condition. The goal of motif discovery is to detect the transcription factor binding motif (i.e. the sequence “pattern” bound by the TF), by assuming that it will be overrepresented in our sample of sequences. There are different strategies to accomplish this, but the standard approach uses expectation maximization (EM) and in particular Gibbs sampling or greedy search. Popular algorithms for motif discovery are MEME, Gibbs Motif Sampler or CONSENSUS. More recently, motif discovery algorithms that make use of phylogenetic foot-printing (the idea that TF-binding site will be conserved in the promoter sequences for the same gene in different species) have become available. These are not usually applied to complement experimental work, but can be used to provide a starting point for it. Popular algorithms include FootPrinter and PhyloGibbs.
The principle of ChIP-chip is simple. The first step is to cross-link the protein-DNA complex. This is done using a fixating agent, such as formaldehyde. The cross-linking can later be reversed with heat. Cross-linking kills the cell, giving a snapshot of the bound TF at a given time. The cell is then lysed, the DNA sheared by sonication and the chromatin[2] (TF-DNA complexes) is pulled down using an antibody (i.e. immunoprecipitated). If an antibody for the TF is available, then it is used; otherwise, the TF is tagged with an epitope targeted by commercially available antibodies (the latter option is cheaper, but runs the risk of altering the TF's functionality). Cross-linking is then reversed to free the bound DNA, which is then amplified, labeled with a fluorophore and dumped onto a DNA-array. The scanned array reveals the genomic regions bound by the TF. The resolution is around ~500 bp as a result of the sonication step.
In motif discovery, we are given a set of sequences that we suspect harbor binding sites for a given transcription factor. A typical scenario is data coming from expression experiments, in which we wish to analyze the promoter region of a bunch of genes that are up- or down-regulated under some condition. The goal of motif discovery is to detect the transcription factor binding motif (i.e. the sequence “pattern” bound by the TF), by assuming that it will be overrepresented in our sample of sequences. There are different strategies to accomplish this, but the standard approach uses expectation maximization (EM) and in particular Gibbs sampling or greedy search. Popular algorithms for motif discovery are MEME, Gibbs Motif Sampler or CONSENSUS. More recently, motif discovery algorithms that make use of phylogenetic foot-printing (the idea that TF-binding site will be conserved in the promoter sequences for the same gene in different species) have become available. These are not usually applied to complement experimental work, but can be used to provide a starting point for it. Popular algorithms include FootPrinter and PhyloGibbs.
The principle of ChIP-chip is simple. The first step is to cross-link the protein-DNA complex. This is done using a fixating agent, such as formaldehyde. The cross-linking can later be reversed with heat. Cross-linking kills the cell, giving a snapshot of the bound TF at a given time. The cell is then lysed, the DNA sheared by sonication and the chromatin[2] (TF-DNA complexes) is pulled down using an antibody (i.e. immunoprecipitated). If an antibody for the TF is available, then it is used; otherwise, the TF is tagged with an epitope targeted by commercially available antibodies (the latter option is cheaper, but runs the risk of altering the TF's functionality). Cross-linking is then reversed to free the bound DNA, which is then amplified, labeled with a fluorophore and dumped onto a DNA-array. The scanned array reveals the genomic regions bound by the TF. The resolution is around ~500 bp as a result of the sonication step.
In motif discovery, we are given a set of sequences that we suspect harbor binding sites for a given transcription factor. A typical scenario is data coming from expression experiments, in which we wish to analyze the promoter region of a bunch of genes that are up- or down-regulated under some condition. The goal of motif discovery is to detect the transcription factor binding motif (i.e. the sequence “pattern” bound by the TF), by assuming that it will be overrepresented in our sample of sequences. There are different strategies to accomplish this, but the standard approach uses expectation maximization (EM) and in particular Gibbs sampling or greedy search. Popular algorithms for motif discovery are MEME, Gibbs Motif Sampler or CONSENSUS. More recently, motif discovery algorithms that make use of phylogenetic foot-printing (the idea that TF-binding site will be conserved in the promoter sequences for the same gene in different species) have become available. These are not usually applied to complement experimental work, but can be used to provide a starting point for it. Popular algorithms include FootPrinter and PhyloGibbs.
The principle of ChIP-chip is simple. The first step is to cross-link the protein-DNA complex. This is done using a fixating agent, such as formaldehyde. The cross-linking can later be reversed with heat. Cross-linking kills the cell, giving a snapshot of the bound TF at a given time. The cell is then lysed, the DNA sheared by sonication and the chromatin[2] (TF-DNA complexes) is pulled down using an antibody (i.e. immunoprecipitated). If an antibody for the TF is available, then it is used; otherwise, the TF is tagged with an epitope targeted by commercially available antibodies (the latter option is cheaper, but runs the risk of altering the TF's functionality). Cross-linking is then reversed to free the bound DNA, which is then amplified, labeled with a fluorophore and dumped onto a DNA-array. The scanned array reveals the genomic regions bound by the TF. The resolution is around ~500 bp as a result of the sonication step.
In motif discovery, we are given a set of sequences that we suspect harbor binding sites for a given transcription factor. A typical scenario is data coming from expression experiments, in which we wish to analyze the promoter region of a bunch of genes that are up- or down-regulated under some condition. The goal of motif discovery is to detect the transcription factor binding motif (i.e. the sequence “pattern” bound by the TF), by assuming that it will be overrepresented in our sample of sequences. There are different strategies to accomplish this, but the standard approach uses expectation maximization (EM) and in particular Gibbs sampling or greedy search. Popular algorithms for motif discovery are MEME, Gibbs Motif Sampler or CONSENSUS. More recently, motif discovery algorithms that make use of phylogenetic foot-printing (the idea that TF-binding site will be conserved in the promoter sequences for the same gene in different species) have become available. These are not usually applied to complement experimental work, but can be used to provide a starting point for it. Popular algorithms include FootPrinter and PhyloGibbs.
The principle of ChIP-chip is simple. The first step is to cross-link the protein-DNA complex. This is done using a fixating agent, such as formaldehyde. The cross-linking can later be reversed with heat. Cross-linking kills the cell, giving a snapshot of the bound TF at a given time. The cell is then lysed, the DNA sheared by sonication and the chromatin[2] (TF-DNA complexes) is pulled down using an antibody (i.e. immunoprecipitated). If an antibody for the TF is available, then it is used; otherwise, the TF is tagged with an epitope targeted by commercially available antibodies (the latter option is cheaper, but runs the risk of altering the TF's functionality). Cross-linking is then reversed to free the bound DNA, which is then amplified, labeled with a fluorophore and dumped onto a DNA-array. The scanned array reveals the genomic regions bound by the TF. The resolution is around ~500 bp as a result of the sonication step.
In motif discovery, we are given a set of sequences that we suspect harbor binding sites for a given transcription factor. A typical scenario is data coming from expression experiments, in which we wish to analyze the promoter region of a bunch of genes that are up- or down-regulated under some condition. The goal of motif discovery is to detect the transcription factor binding motif (i.e. the sequence “pattern” bound by the TF), by assuming that it will be overrepresented in our sample of sequences. There are different strategies to accomplish this, but the standard approach uses expectation maximization (EM) and in particular Gibbs sampling or greedy search. Popular algorithms for motif discovery are MEME, Gibbs Motif Sampler or CONSENSUS. More recently, motif discovery algorithms that make use of phylogenetic foot-printing (the idea that TF-binding site will be conserved in the promoter sequences for the same gene in different species) have become available. These are not usually applied to complement experimental work, but can be used to provide a starting point for it. Popular algorithms include FootPrinter and PhyloGibbs.
The principle of ChIP-chip is simple. The first step is to cross-link the protein-DNA complex. This is done using a fixating agent, such as formaldehyde. The cross-linking can later be reversed with heat. Cross-linking kills the cell, giving a snapshot of the bound TF at a given time. The cell is then lysed, the DNA sheared by sonication and the chromatin[2] (TF-DNA complexes) is pulled down using an antibody (i.e. immunoprecipitated). If an antibody for the TF is available, then it is used; otherwise, the TF is tagged with an epitope targeted by commercially available antibodies (the latter option is cheaper, but runs the risk of altering the TF's functionality). Cross-linking is then reversed to free the bound DNA, which is then amplified, labeled with a fluorophore and dumped onto a DNA-array. The scanned array reveals the genomic regions bound by the TF. The resolution is around ~500 bp as a result of the sonication step.
In motif discovery, we are given a set of sequences that we suspect harbor binding sites for a given transcription factor. A typical scenario is data coming from expression experiments, in which we wish to analyze the promoter region of a bunch of genes that are up- or down-regulated under some condition. The goal of motif discovery is to detect the transcription factor binding motif (i.e. the sequence “pattern” bound by the TF), by assuming that it will be overrepresented in our sample of sequences. There are different strategies to accomplish this, but the standard approach uses expectation maximization (EM) and in particular Gibbs sampling or greedy search. Popular algorithms for motif discovery are MEME, Gibbs Motif Sampler or CONSENSUS. More recently, motif discovery algorithms that make use of phylogenetic foot-printing (the idea that TF-binding site will be conserved in the promoter sequences for the same gene in different species) have become available. These are not usually applied to complement experimental work, but can be used to provide a starting point for it. Popular algorithms include FootPrinter and PhyloGibbs.
The principle of ChIP-chip is simple. The first step is to cross-link the protein-DNA complex. This is done using a fixating agent, such as formaldehyde. The cross-linking can later be reversed with heat. Cross-linking kills the cell, giving a snapshot of the bound TF at a given time. The cell is then lysed, the DNA sheared by sonication and the chromatin[2] (TF-DNA complexes) is pulled down using an antibody (i.e. immunoprecipitated). If an antibody for the TF is available, then it is used; otherwise, the TF is tagged with an epitope targeted by commercially available antibodies (the latter option is cheaper, but runs the risk of altering the TF's functionality). Cross-linking is then reversed to free the bound DNA, which is then amplified, labeled with a fluorophore and dumped onto a DNA-array. The scanned array reveals the genomic regions bound by the TF. The resolution is around ~500 bp as a result of the sonication step.
In motif discovery, we are given a set of sequences that we suspect harbor binding sites for a given transcription factor. A typical scenario is data coming from expression experiments, in which we wish to analyze the promoter region of a bunch of genes that are up- or down-regulated under some condition. The goal of motif discovery is to detect the transcription factor binding motif (i.e. the sequence “pattern” bound by the TF), by assuming that it will be overrepresented in our sample of sequences. There are different strategies to accomplish this, but the standard approach uses expectation maximization (EM) and in particular Gibbs sampling or greedy search. Popular algorithms for motif discovery are MEME, Gibbs Motif Sampler or CONSENSUS. More recently, motif discovery algorithms that make use of phylogenetic foot-printing (the idea that TF-binding site will be conserved in the promoter sequences for the same gene in different species) have become available. These are not usually applied to complement experimental work, but can be used to provide a starting point for it. Popular algorithms include FootPrinter and PhyloGibbs.
Reporter assay using the beta-galactosidase (lacZ) gene.
The lacZ gene is typically fused to the promoter of interest. Differential regulation of the promoter mediated by the TF is assessed by induction of the system and evaluation of lacZ expression. Bacteria expressing lacZ appear blue when grown on a X-gal medium.
The assay is often performed using a plasmid borne construction on a lacZ(def) strain.
The principle of ChIP-chip is simple. The first step is to cross-link the protein-DNA complex. This is done using a fixating agent, such as formaldehyde. The cross-linking can later be reversed with heat. Cross-linking kills the cell, giving a snapshot of the bound TF at a given time. The cell is then lysed, the DNA sheared by sonication and the chromatin[2] (TF-DNA complexes) is pulled down using an antibody (i.e. immunoprecipitated). If an antibody for the TF is available, then it is used; otherwise, the TF is tagged with an epitope targeted by commercially available antibodies (the latter option is cheaper, but runs the risk of altering the TF's functionality). Cross-linking is then reversed to free the bound DNA, which is then amplified, labeled with a fluorophore and dumped onto a DNA-array. The scanned array reveals the genomic regions bound by the TF. The resolution is around ~500 bp as a result of the sonication step.
Electro-mobility shift-assays (or gel retardation assays) are a standard way of assessing TF-binding. A fragment of DNA of interest is amplified and labeled with a fluorophore. The fragment is left to incubate in a solution containing abundant TF and non-specific DNA (e.g. randomly cleaved DNA from salmon sperm, of all things) and then a gel is run with the incubated sample and a control (sample that has not been in contact with the TF). If the TF has bound the sample, the complex will migrate more slowly than unbound DNA through the gel, and this retarded band can be used as evidence of binding. The unspecific DNA ensures that the binding is specific to the fragment of interest and that any non-specific DNA-binding proteins left-over in the TF purification will bind there, instead of on the fragment of interest. EMSAs are typically carried out in a bunch of fragments, shown as multiple double (control+experiment) lanes in a wide picture. Certain additional controls are run in at least one of the fragments to ascertain specificity. In the most basic of these, specific competitor (the fragment of interest or a known positive control, unlabelled) is added to the reaction. This should sequester the TF and hence make the retardation band disappear, proving that the binding is indeed specific
In motif discovery, we are given a set of sequences that we suspect harbor binding sites for a given transcription factor. A typical scenario is data coming from expression experiments, in which we wish to analyze the promoter region of a bunch of genes that are up- or down-regulated under some condition. The goal of motif discovery is to detect the transcription factor binding motif (i.e. the sequence “pattern” bound by the TF), by assuming that it will be overrepresented in our sample of sequences. There are different strategies to accomplish this, but the standard approach uses expectation maximization (EM) and in particular Gibbs sampling or greedy search. Popular algorithms for motif discovery are MEME, Gibbs Motif Sampler or CONSENSUS. More recently, motif discovery algorithms that make use of phylogenetic foot-printing (the idea that TF-binding site will be conserved in the promoter sequences for the same gene in different species) have become available. These are not usually applied to complement experimental work, but can be used to provide a starting point for it. Popular algorithms include FootPrinter and PhyloGibbs.
Target-specific mutation, as opposed to non-specific mutation.
In the context of TF-binding sites, site-directed mutagenesis is typically used to establish/confirm the specific sequence and location of a site, often in tandem with EMSA.
Different positions of a putative binding site are mutated to non-consensus (or random) bases and binding to the mutated site is evaluated through EMSA or other means. Often implemented only in conserved motif positions or serially through all positions of a site.
The principle of ChIP-chip is simple. The first step is to cross-link the protein-DNA complex. This is done using a fixating agent, such as formaldehyde. The cross-linking can later be reversed with heat. Cross-linking kills the cell, giving a snapshot of the bound TF at a given time. The cell is then lysed, the DNA sheared by sonication and the chromatin[2] (TF-DNA complexes) is pulled down using an antibody (i.e. immunoprecipitated). If an antibody for the TF is available, then it is used; otherwise, the TF is tagged with an epitope targeted by commercially available antibodies (the latter option is cheaper, but runs the risk of altering the TF's functionality). Cross-linking is then reversed to free the bound DNA, which is then amplified, labeled with a fluorophore and dumped onto a DNA-array. The scanned array reveals the genomic regions bound by the TF. The resolution is around ~500 bp as a result of the sonication step.
In motif discovery, we are given a set of sequences that we suspect harbor binding sites for a given transcription factor. A typical scenario is data coming from expression experiments, in which we wish to analyze the promoter region of a bunch of genes that are up- or down-regulated under some condition. The goal of motif discovery is to detect the transcription factor binding motif (i.e. the sequence “pattern” bound by the TF), by assuming that it will be overrepresented in our sample of sequences. There are different strategies to accomplish this, but the standard approach uses expectation maximization (EM) and in particular Gibbs sampling or greedy search. Popular algorithms for motif discovery are MEME, Gibbs Motif Sampler or CONSENSUS. More recently, motif discovery algorithms that make use of phylogenetic foot-printing (the idea that TF-binding site will be conserved in the promoter sequences for the same gene in different species) have become available. These are not usually applied to complement experimental work, but can be used to provide a starting point for it. Popular algorithms include FootPrinter and PhyloGibbs.
The principle of ChIP-chip is simple. The first step is to cross-link the protein-DNA complex. This is done using a fixating agent, such as formaldehyde. The cross-linking can later be reversed with heat. Cross-linking kills the cell, giving a snapshot of the bound TF at a given time. The cell is then lysed, the DNA sheared by sonication and the chromatin[2] (TF-DNA complexes) is pulled down using an antibody (i.e. immunoprecipitated). If an antibody for the TF is available, then it is used; otherwise, the TF is tagged with an epitope targeted by commercially available antibodies (the latter option is cheaper, but runs the risk of altering the TF's functionality). Cross-linking is then reversed to free the bound DNA, which is then amplified, labeled with a fluorophore and dumped onto a DNA-array. The scanned array reveals the genomic regions bound by the TF. The resolution is around ~500 bp as a result of the sonication step.
In motif discovery, we are given a set of sequences that we suspect harbor binding sites for a given transcription factor. A typical scenario is data coming from expression experiments, in which we wish to analyze the promoter region of a bunch of genes that are up- or down-regulated under some condition. The goal of motif discovery is to detect the transcription factor binding motif (i.e. the sequence “pattern” bound by the TF), by assuming that it will be overrepresented in our sample of sequences. There are different strategies to accomplish this, but the standard approach uses expectation maximization (EM) and in particular Gibbs sampling or greedy search. Popular algorithms for motif discovery are MEME, Gibbs Motif Sampler or CONSENSUS. More recently, motif discovery algorithms that make use of phylogenetic foot-printing (the idea that TF-binding site will be conserved in the promoter sequences for the same gene in different species) have become available. These are not usually applied to complement experimental work, but can be used to provide a starting point for it. Popular algorithms include FootPrinter and PhyloGibbs.
The principle of ChIP-chip is simple. The first step is to cross-link the protein-DNA complex. This is done using a fixating agent, such as formaldehyde. The cross-linking can later be reversed with heat. Cross-linking kills the cell, giving a snapshot of the bound TF at a given time. The cell is then lysed, the DNA sheared by sonication and the chromatin[2] (TF-DNA complexes) is pulled down using an antibody (i.e. immunoprecipitated). If an antibody for the TF is available, then it is used; otherwise, the TF is tagged with an epitope targeted by commercially available antibodies (the latter option is cheaper, but runs the risk of altering the TF's functionality). Cross-linking is then reversed to free the bound DNA, which is then amplified, labeled with a fluorophore and dumped onto a DNA-array. The scanned array reveals the genomic regions bound by the TF. The resolution is around ~500 bp as a result of the sonication step.
In motif discovery, we are given a set of sequences that we suspect harbor binding sites for a given transcription factor. A typical scenario is data coming from expression experiments, in which we wish to analyze the promoter region of a bunch of genes that are up- or down-regulated under some condition. The goal of motif discovery is to detect the transcription factor binding motif (i.e. the sequence “pattern” bound by the TF), by assuming that it will be overrepresented in our sample of sequences. There are different strategies to accomplish this, but the standard approach uses expectation maximization (EM) and in particular Gibbs sampling or greedy search. Popular algorithms for motif discovery are MEME, Gibbs Motif Sampler or CONSENSUS. More recently, motif discovery algorithms that make use of phylogenetic foot-printing (the idea that TF-binding site will be conserved in the promoter sequences for the same gene in different species) have become available. These are not usually applied to complement experimental work, but can be used to provide a starting point for it. Popular algorithms include FootPrinter and PhyloGibbs.
The principle of ChIP-chip is simple. The first step is to cross-link the protein-DNA complex. This is done using a fixating agent, such as formaldehyde. The cross-linking can later be reversed with heat. Cross-linking kills the cell, giving a snapshot of the bound TF at a given time. The cell is then lysed, the DNA sheared by sonication and the chromatin[2] (TF-DNA complexes) is pulled down using an antibody (i.e. immunoprecipitated). If an antibody for the TF is available, then it is used; otherwise, the TF is tagged with an epitope targeted by commercially available antibodies (the latter option is cheaper, but runs the risk of altering the TF's functionality). Cross-linking is then reversed to free the bound DNA, which is then amplified, labeled with a fluorophore and dumped onto a DNA-array. The scanned array reveals the genomic regions bound by the TF. The resolution is around ~500 bp as a result of the sonication step.
In motif discovery, we are given a set of sequences that we suspect harbor binding sites for a given transcription factor. A typical scenario is data coming from expression experiments, in which we wish to analyze the promoter region of a bunch of genes that are up- or down-regulated under some condition. The goal of motif discovery is to detect the transcription factor binding motif (i.e. the sequence “pattern” bound by the TF), by assuming that it will be overrepresented in our sample of sequences. There are different strategies to accomplish this, but the standard approach uses expectation maximization (EM) and in particular Gibbs sampling or greedy search. Popular algorithms for motif discovery are MEME, Gibbs Motif Sampler or CONSENSUS. More recently, motif discovery algorithms that make use of phylogenetic foot-printing (the idea that TF-binding site will be conserved in the promoter sequences for the same gene in different species) have become available. These are not usually applied to complement experimental work, but can be used to provide a starting point for it. Popular algorithms include FootPrinter and PhyloGibbs.
The principle of ChIP-chip is simple. The first step is to cross-link the protein-DNA complex. This is done using a fixating agent, such as formaldehyde. The cross-linking can later be reversed with heat. Cross-linking kills the cell, giving a snapshot of the bound TF at a given time. The cell is then lysed, the DNA sheared by sonication and the chromatin[2] (TF-DNA complexes) is pulled down using an antibody (i.e. immunoprecipitated). If an antibody for the TF is available, then it is used; otherwise, the TF is tagged with an epitope targeted by commercially available antibodies (the latter option is cheaper, but runs the risk of altering the TF's functionality). Cross-linking is then reversed to free the bound DNA, which is then amplified, labeled with a fluorophore and dumped onto a DNA-array. The scanned array reveals the genomic regions bound by the TF. The resolution is around ~500 bp as a result of the sonication step.
In motif discovery, we are given a set of sequences that we suspect harbor binding sites for a given transcription factor. A typical scenario is data coming from expression experiments, in which we wish to analyze the promoter region of a bunch of genes that are up- or down-regulated under some condition. The goal of motif discovery is to detect the transcription factor binding motif (i.e. the sequence “pattern” bound by the TF), by assuming that it will be overrepresented in our sample of sequences. There are different strategies to accomplish this, but the standard approach uses expectation maximization (EM) and in particular Gibbs sampling or greedy search. Popular algorithms for motif discovery are MEME, Gibbs Motif Sampler or CONSENSUS. More recently, motif discovery algorithms that make use of phylogenetic foot-printing (the idea that TF-binding site will be conserved in the promoter sequences for the same gene in different species) have become available. These are not usually applied to complement experimental work, but can be used to provide a starting point for it. Popular algorithms include FootPrinter and PhyloGibbs.
The principle of ChIP-chip is simple. The first step is to cross-link the protein-DNA complex. This is done using a fixating agent, such as formaldehyde. The cross-linking can later be reversed with heat. Cross-linking kills the cell, giving a snapshot of the bound TF at a given time. The cell is then lysed, the DNA sheared by sonication and the chromatin[2] (TF-DNA complexes) is pulled down using an antibody (i.e. immunoprecipitated). If an antibody for the TF is available, then it is used; otherwise, the TF is tagged with an epitope targeted by commercially available antibodies (the latter option is cheaper, but runs the risk of altering the TF's functionality). Cross-linking is then reversed to free the bound DNA, which is then amplified, labeled with a fluorophore and dumped onto a DNA-array. The scanned array reveals the genomic regions bound by the TF. The resolution is around ~500 bp as a result of the sonication step.
In motif discovery, we are given a set of sequences that we suspect harbor binding sites for a given transcription factor. A typical scenario is data coming from expression experiments, in which we wish to analyze the promoter region of a bunch of genes that are up- or down-regulated under some condition. The goal of motif discovery is to detect the transcription factor binding motif (i.e. the sequence “pattern” bound by the TF), by assuming that it will be overrepresented in our sample of sequences. There are different strategies to accomplish this, but the standard approach uses expectation maximization (EM) and in particular Gibbs sampling or greedy search. Popular algorithms for motif discovery are MEME, Gibbs Motif Sampler or CONSENSUS. More recently, motif discovery algorithms that make use of phylogenetic foot-printing (the idea that TF-binding site will be conserved in the promoter sequences for the same gene in different species) have become available. These are not usually applied to complement experimental work, but can be used to provide a starting point for it. Popular algorithms include FootPrinter and PhyloGibbs.
The principle of ChIP-chip is simple. The first step is to cross-link the protein-DNA complex. This is done using a fixating agent, such as formaldehyde. The cross-linking can later be reversed with heat. Cross-linking kills the cell, giving a snapshot of the bound TF at a given time. The cell is then lysed, the DNA sheared by sonication and the chromatin[2] (TF-DNA complexes) is pulled down using an antibody (i.e. immunoprecipitated). If an antibody for the TF is available, then it is used; otherwise, the TF is tagged with an epitope targeted by commercially available antibodies (the latter option is cheaper, but runs the risk of altering the TF's functionality). Cross-linking is then reversed to free the bound DNA, which is then amplified, labeled with a fluorophore and dumped onto a DNA-array. The scanned array reveals the genomic regions bound by the TF. The resolution is around ~500 bp as a result of the sonication step.
In motif discovery, we are given a set of sequences that we suspect harbor binding sites for a given transcription factor. A typical scenario is data coming from expression experiments, in which we wish to analyze the promoter region of a bunch of genes that are up- or down-regulated under some condition. The goal of motif discovery is to detect the transcription factor binding motif (i.e. the sequence “pattern” bound by the TF), by assuming that it will be overrepresented in our sample of sequences. There are different strategies to accomplish this, but the standard approach uses expectation maximization (EM) and in particular Gibbs sampling or greedy search. Popular algorithms for motif discovery are MEME, Gibbs Motif Sampler or CONSENSUS. More recently, motif discovery algorithms that make use of phylogenetic foot-printing (the idea that TF-binding site will be conserved in the promoter sequences for the same gene in different species) have become available. These are not usually applied to complement experimental work, but can be used to provide a starting point for it. Popular algorithms include FootPrinter and PhyloGibbs.
The principle of ChIP-chip is simple. The first step is to cross-link the protein-DNA complex. This is done using a fixating agent, such as formaldehyde. The cross-linking can later be reversed with heat. Cross-linking kills the cell, giving a snapshot of the bound TF at a given time. The cell is then lysed, the DNA sheared by sonication and the chromatin[2] (TF-DNA complexes) is pulled down using an antibody (i.e. immunoprecipitated). If an antibody for the TF is available, then it is used; otherwise, the TF is tagged with an epitope targeted by commercially available antibodies (the latter option is cheaper, but runs the risk of altering the TF's functionality). Cross-linking is then reversed to free the bound DNA, which is then amplified, labeled with a fluorophore and dumped onto a DNA-array. The scanned array reveals the genomic regions bound by the TF. The resolution is around ~500 bp as a result of the sonication step.
In motif discovery, we are given a set of sequences that we suspect harbor binding sites for a given transcription factor. A typical scenario is data coming from expression experiments, in which we wish to analyze the promoter region of a bunch of genes that are up- or down-regulated under some condition. The goal of motif discovery is to detect the transcription factor binding motif (i.e. the sequence “pattern” bound by the TF), by assuming that it will be overrepresented in our sample of sequences. There are different strategies to accomplish this, but the standard approach uses expectation maximization (EM) and in particular Gibbs sampling or greedy search. Popular algorithms for motif discovery are MEME, Gibbs Motif Sampler or CONSENSUS. More recently, motif discovery algorithms that make use of phylogenetic foot-printing (the idea that TF-binding site will be conserved in the promoter sequences for the same gene in different species) have become available. These are not usually applied to complement experimental work, but can be used to provide a starting point for it. Popular algorithms include FootPrinter and PhyloGibbs.
The principle of ChIP-chip is simple. The first step is to cross-link the protein-DNA complex. This is done using a fixating agent, such as formaldehyde. The cross-linking can later be reversed with heat. Cross-linking kills the cell, giving a snapshot of the bound TF at a given time. The cell is then lysed, the DNA sheared by sonication and the chromatin[2] (TF-DNA complexes) is pulled down using an antibody (i.e. immunoprecipitated). If an antibody for the TF is available, then it is used; otherwise, the TF is tagged with an epitope targeted by commercially available antibodies (the latter option is cheaper, but runs the risk of altering the TF's functionality). Cross-linking is then reversed to free the bound DNA, which is then amplified, labeled with a fluorophore and dumped onto a DNA-array. The scanned array reveals the genomic regions bound by the TF. The resolution is around ~500 bp as a result of the sonication step.
In motif discovery, we are given a set of sequences that we suspect harbor binding sites for a given transcription factor. A typical scenario is data coming from expression experiments, in which we wish to analyze the promoter region of a bunch of genes that are up- or down-regulated under some condition. The goal of motif discovery is to detect the transcription factor binding motif (i.e. the sequence “pattern” bound by the TF), by assuming that it will be overrepresented in our sample of sequences. There are different strategies to accomplish this, but the standard approach uses expectation maximization (EM) and in particular Gibbs sampling or greedy search. Popular algorithms for motif discovery are MEME, Gibbs Motif Sampler or CONSENSUS. More recently, motif discovery algorithms that make use of phylogenetic foot-printing (the idea that TF-binding site will be conserved in the promoter sequences for the same gene in different species) have become available. These are not usually applied to complement experimental work, but can be used to provide a starting point for it. Popular algorithms include FootPrinter and PhyloGibbs.
The principle of ChIP-chip is simple. The first step is to cross-link the protein-DNA complex. This is done using a fixating agent, such as formaldehyde. The cross-linking can later be reversed with heat. Cross-linking kills the cell, giving a snapshot of the bound TF at a given time. The cell is then lysed, the DNA sheared by sonication and the chromatin[2] (TF-DNA complexes) is pulled down using an antibody (i.e. immunoprecipitated). If an antibody for the TF is available, then it is used; otherwise, the TF is tagged with an epitope targeted by commercially available antibodies (the latter option is cheaper, but runs the risk of altering the TF's functionality). Cross-linking is then reversed to free the bound DNA, which is then amplified, labeled with a fluorophore and dumped onto a DNA-array. The scanned array reveals the genomic regions bound by the TF. The resolution is around ~500 bp as a result of the sonication step.
In motif discovery, we are given a set of sequences that we suspect harbor binding sites for a given transcription factor. A typical scenario is data coming from expression experiments, in which we wish to analyze the promoter region of a bunch of genes that are up- or down-regulated under some condition. The goal of motif discovery is to detect the transcription factor binding motif (i.e. the sequence “pattern” bound by the TF), by assuming that it will be overrepresented in our sample of sequences. There are different strategies to accomplish this, but the standard approach uses expectation maximization (EM) and in particular Gibbs sampling or greedy search. Popular algorithms for motif discovery are MEME, Gibbs Motif Sampler or CONSENSUS. More recently, motif discovery algorithms that make use of phylogenetic foot-printing (the idea that TF-binding site will be conserved in the promoter sequences for the same gene in different species) have become available. These are not usually applied to complement experimental work, but can be used to provide a starting point for it. Popular algorithms include FootPrinter and PhyloGibbs.
The principle of ChIP-chip is simple. The first step is to cross-link the protein-DNA complex. This is done using a fixating agent, such as formaldehyde. The cross-linking can later be reversed with heat. Cross-linking kills the cell, giving a snapshot of the bound TF at a given time. The cell is then lysed, the DNA sheared by sonication and the chromatin[2] (TF-DNA complexes) is pulled down using an antibody (i.e. immunoprecipitated). If an antibody for the TF is available, then it is used; otherwise, the TF is tagged with an epitope targeted by commercially available antibodies (the latter option is cheaper, but runs the risk of altering the TF's functionality). Cross-linking is then reversed to free the bound DNA, which is then amplified, labeled with a fluorophore and dumped onto a DNA-array. The scanned array reveals the genomic regions bound by the TF. The resolution is around ~500 bp as a result of the sonication step.
In motif discovery, we are given a set of sequences that we suspect harbor binding sites for a given transcription factor. A typical scenario is data coming from expression experiments, in which we wish to analyze the promoter region of a bunch of genes that are up- or down-regulated under some condition. The goal of motif discovery is to detect the transcription factor binding motif (i.e. the sequence “pattern” bound by the TF), by assuming that it will be overrepresented in our sample of sequences. There are different strategies to accomplish this, but the standard approach uses expectation maximization (EM) and in particular Gibbs sampling or greedy search. Popular algorithms for motif discovery are MEME, Gibbs Motif Sampler or CONSENSUS. More recently, motif discovery algorithms that make use of phylogenetic foot-printing (the idea that TF-binding site will be conserved in the promoter sequences for the same gene in different species) have become available. These are not usually applied to complement experimental work, but can be used to provide a starting point for it. Popular algorithms include FootPrinter and PhyloGibbs.
The principle of ChIP-chip is simple. The first step is to cross-link the protein-DNA complex. This is done using a fixating agent, such as formaldehyde. The cross-linking can later be reversed with heat. Cross-linking kills the cell, giving a snapshot of the bound TF at a given time. The cell is then lysed, the DNA sheared by sonication and the chromatin[2] (TF-DNA complexes) is pulled down using an antibody (i.e. immunoprecipitated). If an antibody for the TF is available, then it is used; otherwise, the TF is tagged with an epitope targeted by commercially available antibodies (the latter option is cheaper, but runs the risk of altering the TF's functionality). Cross-linking is then reversed to free the bound DNA, which is then amplified, labeled with a fluorophore and dumped onto a DNA-array. The scanned array reveals the genomic regions bound by the TF. The resolution is around ~500 bp as a result of the sonication step.
In motif discovery, we are given a set of sequences that we suspect harbor binding sites for a given transcription factor. A typical scenario is data coming from expression experiments, in which we wish to analyze the promoter region of a bunch of genes that are up- or down-regulated under some condition. The goal of motif discovery is to detect the transcription factor binding motif (i.e. the sequence “pattern” bound by the TF), by assuming that it will be overrepresented in our sample of sequences. There are different strategies to accomplish this, but the standard approach uses expectation maximization (EM) and in particular Gibbs sampling or greedy search. Popular algorithms for motif discovery are MEME, Gibbs Motif Sampler or CONSENSUS. More recently, motif discovery algorithms that make use of phylogenetic foot-printing (the idea that TF-binding site will be conserved in the promoter sequences for the same gene in different species) have become available. These are not usually applied to complement experimental work, but can be used to provide a starting point for it. Popular algorithms include FootPrinter and PhyloGibbs.
The principle of ChIP-chip is simple. The first step is to cross-link the protein-DNA complex. This is done using a fixating agent, such as formaldehyde. The cross-linking can later be reversed with heat. Cross-linking kills the cell, giving a snapshot of the bound TF at a given time. The cell is then lysed, the DNA sheared by sonication and the chromatin[2] (TF-DNA complexes) is pulled down using an antibody (i.e. immunoprecipitated). If an antibody for the TF is available, then it is used; otherwise, the TF is tagged with an epitope targeted by commercially available antibodies (the latter option is cheaper, but runs the risk of altering the TF's functionality). Cross-linking is then reversed to free the bound DNA, which is then amplified, labeled with a fluorophore and dumped onto a DNA-array. The scanned array reveals the genomic regions bound by the TF. The resolution is around ~500 bp as a result of the sonication step.
In motif discovery, we are given a set of sequences that we suspect harbor binding sites for a given transcription factor. A typical scenario is data coming from expression experiments, in which we wish to analyze the promoter region of a bunch of genes that are up- or down-regulated under some condition. The goal of motif discovery is to detect the transcription factor binding motif (i.e. the sequence “pattern” bound by the TF), by assuming that it will be overrepresented in our sample of sequences. There are different strategies to accomplish this, but the standard approach uses expectation maximization (EM) and in particular Gibbs sampling or greedy search. Popular algorithms for motif discovery are MEME, Gibbs Motif Sampler or CONSENSUS. More recently, motif discovery algorithms that make use of phylogenetic foot-printing (the idea that TF-binding site will be conserved in the promoter sequences for the same gene in different species) have become available. These are not usually applied to complement experimental work, but can be used to provide a starting point for it. Popular algorithms include FootPrinter and PhyloGibbs.
The principle of ChIP-chip is simple. The first step is to cross-link the protein-DNA complex. This is done using a fixating agent, such as formaldehyde. The cross-linking can later be reversed with heat. Cross-linking kills the cell, giving a snapshot of the bound TF at a given time. The cell is then lysed, the DNA sheared by sonication and the chromatin[2] (TF-DNA complexes) is pulled down using an antibody (i.e. immunoprecipitated). If an antibody for the TF is available, then it is used; otherwise, the TF is tagged with an epitope targeted by commercially available antibodies (the latter option is cheaper, but runs the risk of altering the TF's functionality). Cross-linking is then reversed to free the bound DNA, which is then amplified, labeled with a fluorophore and dumped onto a DNA-array. The scanned array reveals the genomic regions bound by the TF. The resolution is around ~500 bp as a result of the sonication step.
In motif discovery, we are given a set of sequences that we suspect harbor binding sites for a given transcription factor. A typical scenario is data coming from expression experiments, in which we wish to analyze the promoter region of a bunch of genes that are up- or down-regulated under some condition. The goal of motif discovery is to detect the transcription factor binding motif (i.e. the sequence “pattern” bound by the TF), by assuming that it will be overrepresented in our sample of sequences. There are different strategies to accomplish this, but the standard approach uses expectation maximization (EM) and in particular Gibbs sampling or greedy search. Popular algorithms for motif discovery are MEME, Gibbs Motif Sampler or CONSENSUS. More recently, motif discovery algorithms that make use of phylogenetic foot-printing (the idea that TF-binding site will be conserved in the promoter sequences for the same gene in different species) have become available. These are not usually applied to complement experimental work, but can be used to provide a starting point for it. Popular algorithms include FootPrinter and PhyloGibbs.
The principle of ChIP-chip is simple. The first step is to cross-link the protein-DNA complex. This is done using a fixating agent, such as formaldehyde. The cross-linking can later be reversed with heat. Cross-linking kills the cell, giving a snapshot of the bound TF at a given time. The cell is then lysed, the DNA sheared by sonication and the chromatin[2] (TF-DNA complexes) is pulled down using an antibody (i.e. immunoprecipitated). If an antibody for the TF is available, then it is used; otherwise, the TF is tagged with an epitope targeted by commercially available antibodies (the latter option is cheaper, but runs the risk of altering the TF's functionality). Cross-linking is then reversed to free the bound DNA, which is then amplified, labeled with a fluorophore and dumped onto a DNA-array. The scanned array reveals the genomic regions bound by the TF. The resolution is around ~500 bp as a result of the sonication step.
In motif discovery, we are given a set of sequences that we suspect harbor binding sites for a given transcription factor. A typical scenario is data coming from expression experiments, in which we wish to analyze the promoter region of a bunch of genes that are up- or down-regulated under some condition. The goal of motif discovery is to detect the transcription factor binding motif (i.e. the sequence “pattern” bound by the TF), by assuming that it will be overrepresented in our sample of sequences. There are different strategies to accomplish this, but the standard approach uses expectation maximization (EM) and in particular Gibbs sampling or greedy search. Popular algorithms for motif discovery are MEME, Gibbs Motif Sampler or CONSENSUS. More recently, motif discovery algorithms that make use of phylogenetic foot-printing (the idea that TF-binding site will be conserved in the promoter sequences for the same gene in different species) have become available. These are not usually applied to complement experimental work, but can be used to provide a starting point for it. Popular algorithms include FootPrinter and PhyloGibbs.
The principle of ChIP-chip is simple. The first step is to cross-link the protein-DNA complex. This is done using a fixating agent, such as formaldehyde. The cross-linking can later be reversed with heat. Cross-linking kills the cell, giving a snapshot of the bound TF at a given time. The cell is then lysed, the DNA sheared by sonication and the chromatin[2] (TF-DNA complexes) is pulled down using an antibody (i.e. immunoprecipitated). If an antibody for the TF is available, then it is used; otherwise, the TF is tagged with an epitope targeted by commercially available antibodies (the latter option is cheaper, but runs the risk of altering the TF's functionality). Cross-linking is then reversed to free the bound DNA, which is then amplified, labeled with a fluorophore and dumped onto a DNA-array. The scanned array reveals the genomic regions bound by the TF. The resolution is around ~500 bp as a result of the sonication step.
In motif discovery, we are given a set of sequences that we suspect harbor binding sites for a given transcription factor. A typical scenario is data coming from expression experiments, in which we wish to analyze the promoter region of a bunch of genes that are up- or down-regulated under some condition. The goal of motif discovery is to detect the transcription factor binding motif (i.e. the sequence “pattern” bound by the TF), by assuming that it will be overrepresented in our sample of sequences. There are different strategies to accomplish this, but the standard approach uses expectation maximization (EM) and in particular Gibbs sampling or greedy search. Popular algorithms for motif discovery are MEME, Gibbs Motif Sampler or CONSENSUS. More recently, motif discovery algorithms that make use of phylogenetic foot-printing (the idea that TF-binding site will be conserved in the promoter sequences for the same gene in different species) have become available. These are not usually applied to complement experimental work, but can be used to provide a starting point for it. Popular algorithms include FootPrinter and PhyloGibbs.
The principle of ChIP-chip is simple. The first step is to cross-link the protein-DNA complex. This is done using a fixating agent, such as formaldehyde. The cross-linking can later be reversed with heat. Cross-linking kills the cell, giving a snapshot of the bound TF at a given time. The cell is then lysed, the DNA sheared by sonication and the chromatin[2] (TF-DNA complexes) is pulled down using an antibody (i.e. immunoprecipitated). If an antibody for the TF is available, then it is used; otherwise, the TF is tagged with an epitope targeted by commercially available antibodies (the latter option is cheaper, but runs the risk of altering the TF's functionality). Cross-linking is then reversed to free the bound DNA, which is then amplified, labeled with a fluorophore and dumped onto a DNA-array. The scanned array reveals the genomic regions bound by the TF. The resolution is around ~500 bp as a result of the sonication step.
In motif discovery, we are given a set of sequences that we suspect harbor binding sites for a given transcription factor. A typical scenario is data coming from expression experiments, in which we wish to analyze the promoter region of a bunch of genes that are up- or down-regulated under some condition. The goal of motif discovery is to detect the transcription factor binding motif (i.e. the sequence “pattern” bound by the TF), by assuming that it will be overrepresented in our sample of sequences. There are different strategies to accomplish this, but the standard approach uses expectation maximization (EM) and in particular Gibbs sampling or greedy search. Popular algorithms for motif discovery are MEME, Gibbs Motif Sampler or CONSENSUS. More recently, motif discovery algorithms that make use of phylogenetic foot-printing (the idea that TF-binding site will be conserved in the promoter sequences for the same gene in different species) have become available. These are not usually applied to complement experimental work, but can be used to provide a starting point for it. Popular algorithms include FootPrinter and PhyloGibbs.
Reporter assay using the beta-galactosidase (lacZ) gene.
The lacZ gene is typically fused to the promoter of interest. Differential regulation of the promoter mediated by the TF is assessed by induction of the system and evaluation of lacZ expression. Bacteria expressing lacZ appear blue when grown on a X-gal medium.
The assay is often performed using a plasmid borne construction on a lacZ(def) strain.
The principle of ChIP-chip is simple. The first step is to cross-link the protein-DNA complex. This is done using a fixating agent, such as formaldehyde. The cross-linking can later be reversed with heat. Cross-linking kills the cell, giving a snapshot of the bound TF at a given time. The cell is then lysed, the DNA sheared by sonication and the chromatin[2] (TF-DNA complexes) is pulled down using an antibody (i.e. immunoprecipitated). If an antibody for the TF is available, then it is used; otherwise, the TF is tagged with an epitope targeted by commercially available antibodies (the latter option is cheaper, but runs the risk of altering the TF's functionality). Cross-linking is then reversed to free the bound DNA, which is then amplified, labeled with a fluorophore and dumped onto a DNA-array. The scanned array reveals the genomic regions bound by the TF. The resolution is around ~500 bp as a result of the sonication step.
Electro-mobility shift-assays (or gel retardation assays) are a standard way of assessing TF-binding. A fragment of DNA of interest is amplified and labeled with a fluorophore. The fragment is left to incubate in a solution containing abundant TF and non-specific DNA (e.g. randomly cleaved DNA from salmon sperm, of all things) and then a gel is run with the incubated sample and a control (sample that has not been in contact with the TF). If the TF has bound the sample, the complex will migrate more slowly than unbound DNA through the gel, and this retarded band can be used as evidence of binding. The unspecific DNA ensures that the binding is specific to the fragment of interest and that any non-specific DNA-binding proteins left-over in the TF purification will bind there, instead of on the fragment of interest. EMSAs are typically carried out in a bunch of fragments, shown as multiple double (control+experiment) lanes in a wide picture. Certain additional controls are run in at least one of the fragments to ascertain specificity. In the most basic of these, specific competitor (the fragment of interest or a known positive control, unlabelled) is added to the reaction. This should sequester the TF and hence make the retardation band disappear, proving that the binding is indeed specific
In motif discovery, we are given a set of sequences that we suspect harbor binding sites for a given transcription factor. A typical scenario is data coming from expression experiments, in which we wish to analyze the promoter region of a bunch of genes that are up- or down-regulated under some condition. The goal of motif discovery is to detect the transcription factor binding motif (i.e. the sequence “pattern” bound by the TF), by assuming that it will be overrepresented in our sample of sequences. There are different strategies to accomplish this, but the standard approach uses expectation maximization (EM) and in particular Gibbs sampling or greedy search. Popular algorithms for motif discovery are MEME, Gibbs Motif Sampler or CONSENSUS. More recently, motif discovery algorithms that make use of phylogenetic foot-printing (the idea that TF-binding site will be conserved in the promoter sequences for the same gene in different species) have become available. These are not usually applied to complement experimental work, but can be used to provide a starting point for it. Popular algorithms include FootPrinter and PhyloGibbs.
Target-specific mutation, as opposed to non-specific mutation.
In the context of TF-binding sites, site-directed mutagenesis is typically used to establish/confirm the specific sequence and location of a site, often in tandem with EMSA.
Different positions of a putative binding site are mutated to non-consensus (or random) bases and binding to the mutated site is evaluated through EMSA or other means. Often implemented only in conserved motif positions or serially through all positions of a site.
The principle of ChIP-chip is simple. The first step is to cross-link the protein-DNA complex. This is done using a fixating agent, such as formaldehyde. The cross-linking can later be reversed with heat. Cross-linking kills the cell, giving a snapshot of the bound TF at a given time. The cell is then lysed, the DNA sheared by sonication and the chromatin[2] (TF-DNA complexes) is pulled down using an antibody (i.e. immunoprecipitated). If an antibody for the TF is available, then it is used; otherwise, the TF is tagged with an epitope targeted by commercially available antibodies (the latter option is cheaper, but runs the risk of altering the TF's functionality). Cross-linking is then reversed to free the bound DNA, which is then amplified, labeled with a fluorophore and dumped onto a DNA-array. The scanned array reveals the genomic regions bound by the TF. The resolution is around ~500 bp as a result of the sonication step.
In motif discovery, we are given a set of sequences that we suspect harbor binding sites for a given transcription factor. A typical scenario is data coming from expression experiments, in which we wish to analyze the promoter region of a bunch of genes that are up- or down-regulated under some condition. The goal of motif discovery is to detect the transcription factor binding motif (i.e. the sequence “pattern” bound by the TF), by assuming that it will be overrepresented in our sample of sequences. There are different strategies to accomplish this, but the standard approach uses expectation maximization (EM) and in particular Gibbs sampling or greedy search. Popular algorithms for motif discovery are MEME, Gibbs Motif Sampler or CONSENSUS. More recently, motif discovery algorithms that make use of phylogenetic foot-printing (the idea that TF-binding site will be conserved in the promoter sequences for the same gene in different species) have become available. These are not usually applied to complement experimental work, but can be used to provide a starting point for it. Popular algorithms include FootPrinter and PhyloGibbs.
The principle of ChIP-chip is simple. The first step is to cross-link the protein-DNA complex. This is done using a fixating agent, such as formaldehyde. The cross-linking can later be reversed with heat. Cross-linking kills the cell, giving a snapshot of the bound TF at a given time. The cell is then lysed, the DNA sheared by sonication and the chromatin[2] (TF-DNA complexes) is pulled down using an antibody (i.e. immunoprecipitated). If an antibody for the TF is available, then it is used; otherwise, the TF is tagged with an epitope targeted by commercially available antibodies (the latter option is cheaper, but runs the risk of altering the TF's functionality). Cross-linking is then reversed to free the bound DNA, which is then amplified, labeled with a fluorophore and dumped onto a DNA-array. The scanned array reveals the genomic regions bound by the TF. The resolution is around ~500 bp as a result of the sonication step.
In motif discovery, we are given a set of sequences that we suspect harbor binding sites for a given transcription factor. A typical scenario is data coming from expression experiments, in which we wish to analyze the promoter region of a bunch of genes that are up- or down-regulated under some condition. The goal of motif discovery is to detect the transcription factor binding motif (i.e. the sequence “pattern” bound by the TF), by assuming that it will be overrepresented in our sample of sequences. There are different strategies to accomplish this, but the standard approach uses expectation maximization (EM) and in particular Gibbs sampling or greedy search. Popular algorithms for motif discovery are MEME, Gibbs Motif Sampler or CONSENSUS. More recently, motif discovery algorithms that make use of phylogenetic foot-printing (the idea that TF-binding site will be conserved in the promoter sequences for the same gene in different species) have become available. These are not usually applied to complement experimental work, but can be used to provide a starting point for it. Popular algorithms include FootPrinter and PhyloGibbs.
The principle of ChIP-chip is simple. The first step is to cross-link the protein-DNA complex. This is done using a fixating agent, such as formaldehyde. The cross-linking can later be reversed with heat. Cross-linking kills the cell, giving a snapshot of the bound TF at a given time. The cell is then lysed, the DNA sheared by sonication and the chromatin[2] (TF-DNA complexes) is pulled down using an antibody (i.e. immunoprecipitated). If an antibody for the TF is available, then it is used; otherwise, the TF is tagged with an epitope targeted by commercially available antibodies (the latter option is cheaper, but runs the risk of altering the TF's functionality). Cross-linking is then reversed to free the bound DNA, which is then amplified, labeled with a fluorophore and dumped onto a DNA-array. The scanned array reveals the genomic regions bound by the TF. The resolution is around ~500 bp as a result of the sonication step.
In motif discovery, we are given a set of sequences that we suspect harbor binding sites for a given transcription factor. A typical scenario is data coming from expression experiments, in which we wish to analyze the promoter region of a bunch of genes that are up- or down-regulated under some condition. The goal of motif discovery is to detect the transcription factor binding motif (i.e. the sequence “pattern” bound by the TF), by assuming that it will be overrepresented in our sample of sequences. There are different strategies to accomplish this, but the standard approach uses expectation maximization (EM) and in particular Gibbs sampling or greedy search. Popular algorithms for motif discovery are MEME, Gibbs Motif Sampler or CONSENSUS. More recently, motif discovery algorithms that make use of phylogenetic foot-printing (the idea that TF-binding site will be conserved in the promoter sequences for the same gene in different species) have become available. These are not usually applied to complement experimental work, but can be used to provide a starting point for it. Popular algorithms include FootPrinter and PhyloGibbs.
The principle of ChIP-chip is simple. The first step is to cross-link the protein-DNA complex. This is done using a fixating agent, such as formaldehyde. The cross-linking can later be reversed with heat. Cross-linking kills the cell, giving a snapshot of the bound TF at a given time. The cell is then lysed, the DNA sheared by sonication and the chromatin[2] (TF-DNA complexes) is pulled down using an antibody (i.e. immunoprecipitated). If an antibody for the TF is available, then it is used; otherwise, the TF is tagged with an epitope targeted by commercially available antibodies (the latter option is cheaper, but runs the risk of altering the TF's functionality). Cross-linking is then reversed to free the bound DNA, which is then amplified, labeled with a fluorophore and dumped onto a DNA-array. The scanned array reveals the genomic regions bound by the TF. The resolution is around ~500 bp as a result of the sonication step.
In motif discovery, we are given a set of sequences that we suspect harbor binding sites for a given transcription factor. A typical scenario is data coming from expression experiments, in which we wish to analyze the promoter region of a bunch of genes that are up- or down-regulated under some condition. The goal of motif discovery is to detect the transcription factor binding motif (i.e. the sequence “pattern” bound by the TF), by assuming that it will be overrepresented in our sample of sequences. There are different strategies to accomplish this, but the standard approach uses expectation maximization (EM) and in particular Gibbs sampling or greedy search. Popular algorithms for motif discovery are MEME, Gibbs Motif Sampler or CONSENSUS. More recently, motif discovery algorithms that make use of phylogenetic foot-printing (the idea that TF-binding site will be conserved in the promoter sequences for the same gene in different species) have become available. These are not usually applied to complement experimental work, but can be used to provide a starting point for it. Popular algorithms include FootPrinter and PhyloGibbs.
The principle of ChIP-chip is simple. The first step is to cross-link the protein-DNA complex. This is done using a fixating agent, such as formaldehyde. The cross-linking can later be reversed with heat. Cross-linking kills the cell, giving a snapshot of the bound TF at a given time. The cell is then lysed, the DNA sheared by sonication and the chromatin[2] (TF-DNA complexes) is pulled down using an antibody (i.e. immunoprecipitated). If an antibody for the TF is available, then it is used; otherwise, the TF is tagged with an epitope targeted by commercially available antibodies (the latter option is cheaper, but runs the risk of altering the TF's functionality). Cross-linking is then reversed to free the bound DNA, which is then amplified, labeled with a fluorophore and dumped onto a DNA-array. The scanned array reveals the genomic regions bound by the TF. The resolution is around ~500 bp as a result of the sonication step.
In motif discovery, we are given a set of sequences that we suspect harbor binding sites for a given transcription factor. A typical scenario is data coming from expression experiments, in which we wish to analyze the promoter region of a bunch of genes that are up- or down-regulated under some condition. The goal of motif discovery is to detect the transcription factor binding motif (i.e. the sequence “pattern” bound by the TF), by assuming that it will be overrepresented in our sample of sequences. There are different strategies to accomplish this, but the standard approach uses expectation maximization (EM) and in particular Gibbs sampling or greedy search. Popular algorithms for motif discovery are MEME, Gibbs Motif Sampler or CONSENSUS. More recently, motif discovery algorithms that make use of phylogenetic foot-printing (the idea that TF-binding site will be conserved in the promoter sequences for the same gene in different species) have become available. These are not usually applied to complement experimental work, but can be used to provide a starting point for it. Popular algorithms include FootPrinter and PhyloGibbs.
The principle of ChIP-chip is simple. The first step is to cross-link the protein-DNA complex. This is done using a fixating agent, such as formaldehyde. The cross-linking can later be reversed with heat. Cross-linking kills the cell, giving a snapshot of the bound TF at a given time. The cell is then lysed, the DNA sheared by sonication and the chromatin[2] (TF-DNA complexes) is pulled down using an antibody (i.e. immunoprecipitated). If an antibody for the TF is available, then it is used; otherwise, the TF is tagged with an epitope targeted by commercially available antibodies (the latter option is cheaper, but runs the risk of altering the TF's functionality). Cross-linking is then reversed to free the bound DNA, which is then amplified, labeled with a fluorophore and dumped onto a DNA-array. The scanned array reveals the genomic regions bound by the TF. The resolution is around ~500 bp as a result of the sonication step.
In motif discovery, we are given a set of sequences that we suspect harbor binding sites for a given transcription factor. A typical scenario is data coming from expression experiments, in which we wish to analyze the promoter region of a bunch of genes that are up- or down-regulated under some condition. The goal of motif discovery is to detect the transcription factor binding motif (i.e. the sequence “pattern” bound by the TF), by assuming that it will be overrepresented in our sample of sequences. There are different strategies to accomplish this, but the standard approach uses expectation maximization (EM) and in particular Gibbs sampling or greedy search. Popular algorithms for motif discovery are MEME, Gibbs Motif Sampler or CONSENSUS. More recently, motif discovery algorithms that make use of phylogenetic foot-printing (the idea that TF-binding site will be conserved in the promoter sequences for the same gene in different species) have become available. These are not usually applied to complement experimental work, but can be used to provide a starting point for it. Popular algorithms include FootPrinter and PhyloGibbs.
The principle of ChIP-chip is simple. The first step is to cross-link the protein-DNA complex. This is done using a fixating agent, such as formaldehyde. The cross-linking can later be reversed with heat. Cross-linking kills the cell, giving a snapshot of the bound TF at a given time. The cell is then lysed, the DNA sheared by sonication and the chromatin[2] (TF-DNA complexes) is pulled down using an antibody (i.e. immunoprecipitated). If an antibody for the TF is available, then it is used; otherwise, the TF is tagged with an epitope targeted by commercially available antibodies (the latter option is cheaper, but runs the risk of altering the TF's functionality). Cross-linking is then reversed to free the bound DNA, which is then amplified, labeled with a fluorophore and dumped onto a DNA-array. The scanned array reveals the genomic regions bound by the TF. The resolution is around ~500 bp as a result of the sonication step.
In motif discovery, we are given a set of sequences that we suspect harbor binding sites for a given transcription factor. A typical scenario is data coming from expression experiments, in which we wish to analyze the promoter region of a bunch of genes that are up- or down-regulated under some condition. The goal of motif discovery is to detect the transcription factor binding motif (i.e. the sequence “pattern” bound by the TF), by assuming that it will be overrepresented in our sample of sequences. There are different strategies to accomplish this, but the standard approach uses expectation maximization (EM) and in particular Gibbs sampling or greedy search. Popular algorithms for motif discovery are MEME, Gibbs Motif Sampler or CONSENSUS. More recently, motif discovery algorithms that make use of phylogenetic foot-printing (the idea that TF-binding site will be conserved in the promoter sequences for the same gene in different species) have become available. These are not usually applied to complement experimental work, but can be used to provide a starting point for it. Popular algorithms include FootPrinter and PhyloGibbs.
The principle of ChIP-chip is simple. The first step is to cross-link the protein-DNA complex. This is done using a fixating agent, such as formaldehyde. The cross-linking can later be reversed with heat. Cross-linking kills the cell, giving a snapshot of the bound TF at a given time. The cell is then lysed, the DNA sheared by sonication and the chromatin[2] (TF-DNA complexes) is pulled down using an antibody (i.e. immunoprecipitated). If an antibody for the TF is available, then it is used; otherwise, the TF is tagged with an epitope targeted by commercially available antibodies (the latter option is cheaper, but runs the risk of altering the TF's functionality). Cross-linking is then reversed to free the bound DNA, which is then amplified, labeled with a fluorophore and dumped onto a DNA-array. The scanned array reveals the genomic regions bound by the TF. The resolution is around ~500 bp as a result of the sonication step.
In motif discovery, we are given a set of sequences that we suspect harbor binding sites for a given transcription factor. A typical scenario is data coming from expression experiments, in which we wish to analyze the promoter region of a bunch of genes that are up- or down-regulated under some condition. The goal of motif discovery is to detect the transcription factor binding motif (i.e. the sequence “pattern” bound by the TF), by assuming that it will be overrepresented in our sample of sequences. There are different strategies to accomplish this, but the standard approach uses expectation maximization (EM) and in particular Gibbs sampling or greedy search. Popular algorithms for motif discovery are MEME, Gibbs Motif Sampler or CONSENSUS. More recently, motif discovery algorithms that make use of phylogenetic foot-printing (the idea that TF-binding site will be conserved in the promoter sequences for the same gene in different species) have become available. These are not usually applied to complement experimental work, but can be used to provide a starting point for it. Popular algorithms include FootPrinter and PhyloGibbs.
The principle of ChIP-chip is simple. The first step is to cross-link the protein-DNA complex. This is done using a fixating agent, such as formaldehyde. The cross-linking can later be reversed with heat. Cross-linking kills the cell, giving a snapshot of the bound TF at a given time. The cell is then lysed, the DNA sheared by sonication and the chromatin[2] (TF-DNA complexes) is pulled down using an antibody (i.e. immunoprecipitated). If an antibody for the TF is available, then it is used; otherwise, the TF is tagged with an epitope targeted by commercially available antibodies (the latter option is cheaper, but runs the risk of altering the TF's functionality). Cross-linking is then reversed to free the bound DNA, which is then amplified, labeled with a fluorophore and dumped onto a DNA-array. The scanned array reveals the genomic regions bound by the TF. The resolution is around ~500 bp as a result of the sonication step.
In motif discovery, we are given a set of sequences that we suspect harbor binding sites for a given transcription factor. A typical scenario is data coming from expression experiments, in which we wish to analyze the promoter region of a bunch of genes that are up- or down-regulated under some condition. The goal of motif discovery is to detect the transcription factor binding motif (i.e. the sequence “pattern” bound by the TF), by assuming that it will be overrepresented in our sample of sequences. There are different strategies to accomplish this, but the standard approach uses expectation maximization (EM) and in particular Gibbs sampling or greedy search. Popular algorithms for motif discovery are MEME, Gibbs Motif Sampler or CONSENSUS. More recently, motif discovery algorithms that make use of phylogenetic foot-printing (the idea that TF-binding site will be conserved in the promoter sequences for the same gene in different species) have become available. These are not usually applied to complement experimental work, but can be used to provide a starting point for it. Popular algorithms include FootPrinter and PhyloGibbs.
The principle of ChIP-chip is simple. The first step is to cross-link the protein-DNA complex. This is done using a fixating agent, such as formaldehyde. The cross-linking can later be reversed with heat. Cross-linking kills the cell, giving a snapshot of the bound TF at a given time. The cell is then lysed, the DNA sheared by sonication and the chromatin[2] (TF-DNA complexes) is pulled down using an antibody (i.e. immunoprecipitated). If an antibody for the TF is available, then it is used; otherwise, the TF is tagged with an epitope targeted by commercially available antibodies (the latter option is cheaper, but runs the risk of altering the TF's functionality). Cross-linking is then reversed to free the bound DNA, which is then amplified, labeled with a fluorophore and dumped onto a DNA-array. The scanned array reveals the genomic regions bound by the TF. The resolution is around ~500 bp as a result of the sonication step.
In motif discovery, we are given a set of sequences that we suspect harbor binding sites for a given transcription factor. A typical scenario is data coming from expression experiments, in which we wish to analyze the promoter region of a bunch of genes that are up- or down-regulated under some condition. The goal of motif discovery is to detect the transcription factor binding motif (i.e. the sequence “pattern” bound by the TF), by assuming that it will be overrepresented in our sample of sequences. There are different strategies to accomplish this, but the standard approach uses expectation maximization (EM) and in particular Gibbs sampling or greedy search. Popular algorithms for motif discovery are MEME, Gibbs Motif Sampler or CONSENSUS. More recently, motif discovery algorithms that make use of phylogenetic foot-printing (the idea that TF-binding site will be conserved in the promoter sequences for the same gene in different species) have become available. These are not usually applied to complement experimental work, but can be used to provide a starting point for it. Popular algorithms include FootPrinter and PhyloGibbs.
The principle of ChIP-chip is simple. The first step is to cross-link the protein-DNA complex. This is done using a fixating agent, such as formaldehyde. The cross-linking can later be reversed with heat. Cross-linking kills the cell, giving a snapshot of the bound TF at a given time. The cell is then lysed, the DNA sheared by sonication and the chromatin[2] (TF-DNA complexes) is pulled down using an antibody (i.e. immunoprecipitated). If an antibody for the TF is available, then it is used; otherwise, the TF is tagged with an epitope targeted by commercially available antibodies (the latter option is cheaper, but runs the risk of altering the TF's functionality). Cross-linking is then reversed to free the bound DNA, which is then amplified, labeled with a fluorophore and dumped onto a DNA-array. The scanned array reveals the genomic regions bound by the TF. The resolution is around ~500 bp as a result of the sonication step.
In motif discovery, we are given a set of sequences that we suspect harbor binding sites for a given transcription factor. A typical scenario is data coming from expression experiments, in which we wish to analyze the promoter region of a bunch of genes that are up- or down-regulated under some condition. The goal of motif discovery is to detect the transcription factor binding motif (i.e. the sequence “pattern” bound by the TF), by assuming that it will be overrepresented in our sample of sequences. There are different strategies to accomplish this, but the standard approach uses expectation maximization (EM) and in particular Gibbs sampling or greedy search. Popular algorithms for motif discovery are MEME, Gibbs Motif Sampler or CONSENSUS. More recently, motif discovery algorithms that make use of phylogenetic foot-printing (the idea that TF-binding site will be conserved in the promoter sequences for the same gene in different species) have become available. These are not usually applied to complement experimental work, but can be used to provide a starting point for it. Popular algorithms include FootPrinter and PhyloGibbs.
The principle of ChIP-chip is simple. The first step is to cross-link the protein-DNA complex. This is done using a fixating agent, such as formaldehyde. The cross-linking can later be reversed with heat. Cross-linking kills the cell, giving a snapshot of the bound TF at a given time. The cell is then lysed, the DNA sheared by sonication and the chromatin[2] (TF-DNA complexes) is pulled down using an antibody (i.e. immunoprecipitated). If an antibody for the TF is available, then it is used; otherwise, the TF is tagged with an epitope targeted by commercially available antibodies (the latter option is cheaper, but runs the risk of altering the TF's functionality). Cross-linking is then reversed to free the bound DNA, which is then amplified, labeled with a fluorophore and dumped onto a DNA-array. The scanned array reveals the genomic regions bound by the TF. The resolution is around ~500 bp as a result of the sonication step.
In motif discovery, we are given a set of sequences that we suspect harbor binding sites for a given transcription factor. A typical scenario is data coming from expression experiments, in which we wish to analyze the promoter region of a bunch of genes that are up- or down-regulated under some condition. The goal of motif discovery is to detect the transcription factor binding motif (i.e. the sequence “pattern” bound by the TF), by assuming that it will be overrepresented in our sample of sequences. There are different strategies to accomplish this, but the standard approach uses expectation maximization (EM) and in particular Gibbs sampling or greedy search. Popular algorithms for motif discovery are MEME, Gibbs Motif Sampler or CONSENSUS. More recently, motif discovery algorithms that make use of phylogenetic foot-printing (the idea that TF-binding site will be conserved in the promoter sequences for the same gene in different species) have become available. These are not usually applied to complement experimental work, but can be used to provide a starting point for it. Popular algorithms include FootPrinter and PhyloGibbs.
The principle of ChIP-chip is simple. The first step is to cross-link the protein-DNA complex. This is done using a fixating agent, such as formaldehyde. The cross-linking can later be reversed with heat. Cross-linking kills the cell, giving a snapshot of the bound TF at a given time. The cell is then lysed, the DNA sheared by sonication and the chromatin[2] (TF-DNA complexes) is pulled down using an antibody (i.e. immunoprecipitated). If an antibody for the TF is available, then it is used; otherwise, the TF is tagged with an epitope targeted by commercially available antibodies (the latter option is cheaper, but runs the risk of altering the TF's functionality). Cross-linking is then reversed to free the bound DNA, which is then amplified, labeled with a fluorophore and dumped onto a DNA-array. The scanned array reveals the genomic regions bound by the TF. The resolution is around ~500 bp as a result of the sonication step.
In motif discovery, we are given a set of sequences that we suspect harbor binding sites for a given transcription factor. A typical scenario is data coming from expression experiments, in which we wish to analyze the promoter region of a bunch of genes that are up- or down-regulated under some condition. The goal of motif discovery is to detect the transcription factor binding motif (i.e. the sequence “pattern” bound by the TF), by assuming that it will be overrepresented in our sample of sequences. There are different strategies to accomplish this, but the standard approach uses expectation maximization (EM) and in particular Gibbs sampling or greedy search. Popular algorithms for motif discovery are MEME, Gibbs Motif Sampler or CONSENSUS. More recently, motif discovery algorithms that make use of phylogenetic foot-printing (the idea that TF-binding site will be conserved in the promoter sequences for the same gene in different species) have become available. These are not usually applied to complement experimental work, but can be used to provide a starting point for it. Popular algorithms include FootPrinter and PhyloGibbs.
The principle of ChIP-chip is simple. The first step is to cross-link the protein-DNA complex. This is done using a fixating agent, such as formaldehyde. The cross-linking can later be reversed with heat. Cross-linking kills the cell, giving a snapshot of the bound TF at a given time. The cell is then lysed, the DNA sheared by sonication and the chromatin[2] (TF-DNA complexes) is pulled down using an antibody (i.e. immunoprecipitated). If an antibody for the TF is available, then it is used; otherwise, the TF is tagged with an epitope targeted by commercially available antibodies (the latter option is cheaper, but runs the risk of altering the TF's functionality). Cross-linking is then reversed to free the bound DNA, which is then amplified, labeled with a fluorophore and dumped onto a DNA-array. The scanned array reveals the genomic regions bound by the TF. The resolution is around ~500 bp as a result of the sonication step.
In motif discovery, we are given a set of sequences that we suspect harbor binding sites for a given transcription factor. A typical scenario is data coming from expression experiments, in which we wish to analyze the promoter region of a bunch of genes that are up- or down-regulated under some condition. The goal of motif discovery is to detect the transcription factor binding motif (i.e. the sequence “pattern” bound by the TF), by assuming that it will be overrepresented in our sample of sequences. There are different strategies to accomplish this, but the standard approach uses expectation maximization (EM) and in particular Gibbs sampling or greedy search. Popular algorithms for motif discovery are MEME, Gibbs Motif Sampler or CONSENSUS. More recently, motif discovery algorithms that make use of phylogenetic foot-printing (the idea that TF-binding site will be conserved in the promoter sequences for the same gene in different species) have become available. These are not usually applied to complement experimental work, but can be used to provide a starting point for it. Popular algorithms include FootPrinter and PhyloGibbs.
The principle of ChIP-chip is simple. The first step is to cross-link the protein-DNA complex. This is done using a fixating agent, such as formaldehyde. The cross-linking can later be reversed with heat. Cross-linking kills the cell, giving a snapshot of the bound TF at a given time. The cell is then lysed, the DNA sheared by sonication and the chromatin[2] (TF-DNA complexes) is pulled down using an antibody (i.e. immunoprecipitated). If an antibody for the TF is available, then it is used; otherwise, the TF is tagged with an epitope targeted by commercially available antibodies (the latter option is cheaper, but runs the risk of altering the TF's functionality). Cross-linking is then reversed to free the bound DNA, which is then amplified, labeled with a fluorophore and dumped onto a DNA-array. The scanned array reveals the genomic regions bound by the TF. The resolution is around ~500 bp as a result of the sonication step.
In motif discovery, we are given a set of sequences that we suspect harbor binding sites for a given transcription factor. A typical scenario is data coming from expression experiments, in which we wish to analyze the promoter region of a bunch of genes that are up- or down-regulated under some condition. The goal of motif discovery is to detect the transcription factor binding motif (i.e. the sequence “pattern” bound by the TF), by assuming that it will be overrepresented in our sample of sequences. There are different strategies to accomplish this, but the standard approach uses expectation maximization (EM) and in particular Gibbs sampling or greedy search. Popular algorithms for motif discovery are MEME, Gibbs Motif Sampler or CONSENSUS. More recently, motif discovery algorithms that make use of phylogenetic foot-printing (the idea that TF-binding site will be conserved in the promoter sequences for the same gene in different species) have become available. These are not usually applied to complement experimental work, but can be used to provide a starting point for it. Popular algorithms include FootPrinter and PhyloGibbs.
The principle of ChIP-chip is simple. The first step is to cross-link the protein-DNA complex. This is done using a fixating agent, such as formaldehyde. The cross-linking can later be reversed with heat. Cross-linking kills the cell, giving a snapshot of the bound TF at a given time. The cell is then lysed, the DNA sheared by sonication and the chromatin[2] (TF-DNA complexes) is pulled down using an antibody (i.e. immunoprecipitated). If an antibody for the TF is available, then it is used; otherwise, the TF is tagged with an epitope targeted by commercially available antibodies (the latter option is cheaper, but runs the risk of altering the TF's functionality). Cross-linking is then reversed to free the bound DNA, which is then amplified, labeled with a fluorophore and dumped onto a DNA-array. The scanned array reveals the genomic regions bound by the TF. The resolution is around ~500 bp as a result of the sonication step.
In motif discovery, we are given a set of sequences that we suspect harbor binding sites for a given transcription factor. A typical scenario is data coming from expression experiments, in which we wish to analyze the promoter region of a bunch of genes that are up- or down-regulated under some condition. The goal of motif discovery is to detect the transcription factor binding motif (i.e. the sequence “pattern” bound by the TF), by assuming that it will be overrepresented in our sample of sequences. There are different strategies to accomplish this, but the standard approach uses expectation maximization (EM) and in particular Gibbs sampling or greedy search. Popular algorithms for motif discovery are MEME, Gibbs Motif Sampler or CONSENSUS. More recently, motif discovery algorithms that make use of phylogenetic foot-printing (the idea that TF-binding site will be conserved in the promoter sequences for the same gene in different species) have become available. These are not usually applied to complement experimental work, but can be used to provide a starting point for it. Popular algorithms include FootPrinter and PhyloGibbs.
The principle of ChIP-chip is simple. The first step is to cross-link the protein-DNA complex. This is done using a fixating agent, such as formaldehyde. The cross-linking can later be reversed with heat. Cross-linking kills the cell, giving a snapshot of the bound TF at a given time. The cell is then lysed, the DNA sheared by sonication and the chromatin[2] (TF-DNA complexes) is pulled down using an antibody (i.e. immunoprecipitated). If an antibody for the TF is available, then it is used; otherwise, the TF is tagged with an epitope targeted by commercially available antibodies (the latter option is cheaper, but runs the risk of altering the TF's functionality). Cross-linking is then reversed to free the bound DNA, which is then amplified, labeled with a fluorophore and dumped onto a DNA-array. The scanned array reveals the genomic regions bound by the TF. The resolution is around ~500 bp as a result of the sonication step.
In motif discovery, we are given a set of sequences that we suspect harbor binding sites for a given transcription factor. A typical scenario is data coming from expression experiments, in which we wish to analyze the promoter region of a bunch of genes that are up- or down-regulated under some condition. The goal of motif discovery is to detect the transcription factor binding motif (i.e. the sequence “pattern” bound by the TF), by assuming that it will be overrepresented in our sample of sequences. There are different strategies to accomplish this, but the standard approach uses expectation maximization (EM) and in particular Gibbs sampling or greedy search. Popular algorithms for motif discovery are MEME, Gibbs Motif Sampler or CONSENSUS. More recently, motif discovery algorithms that make use of phylogenetic foot-printing (the idea that TF-binding site will be conserved in the promoter sequences for the same gene in different species) have become available. These are not usually applied to complement experimental work, but can be used to provide a starting point for it. Popular algorithms include FootPrinter and PhyloGibbs.
The principle of ChIP-chip is simple. The first step is to cross-link the protein-DNA complex. This is done using a fixating agent, such as formaldehyde. The cross-linking can later be reversed with heat. Cross-linking kills the cell, giving a snapshot of the bound TF at a given time. The cell is then lysed, the DNA sheared by sonication and the chromatin[2] (TF-DNA complexes) is pulled down using an antibody (i.e. immunoprecipitated). If an antibody for the TF is available, then it is used; otherwise, the TF is tagged with an epitope targeted by commercially available antibodies (the latter option is cheaper, but runs the risk of altering the TF's functionality). Cross-linking is then reversed to free the bound DNA, which is then amplified, labeled with a fluorophore and dumped onto a DNA-array. The scanned array reveals the genomic regions bound by the TF. The resolution is around ~500 bp as a result of the sonication step.
In motif discovery, we are given a set of sequences that we suspect harbor binding sites for a given transcription factor. A typical scenario is data coming from expression experiments, in which we wish to analyze the promoter region of a bunch of genes that are up- or down-regulated under some condition. The goal of motif discovery is to detect the transcription factor binding motif (i.e. the sequence “pattern” bound by the TF), by assuming that it will be overrepresented in our sample of sequences. There are different strategies to accomplish this, but the standard approach uses expectation maximization (EM) and in particular Gibbs sampling or greedy search. Popular algorithms for motif discovery are MEME, Gibbs Motif Sampler or CONSENSUS. More recently, motif discovery algorithms that make use of phylogenetic foot-printing (the idea that TF-binding site will be conserved in the promoter sequences for the same gene in different species) have become available. These are not usually applied to complement experimental work, but can be used to provide a starting point for it. Popular algorithms include FootPrinter and PhyloGibbs.
The principle of ChIP-chip is simple. The first step is to cross-link the protein-DNA complex. This is done using a fixating agent, such as formaldehyde. The cross-linking can later be reversed with heat. Cross-linking kills the cell, giving a snapshot of the bound TF at a given time. The cell is then lysed, the DNA sheared by sonication and the chromatin[2] (TF-DNA complexes) is pulled down using an antibody (i.e. immunoprecipitated). If an antibody for the TF is available, then it is used; otherwise, the TF is tagged with an epitope targeted by commercially available antibodies (the latter option is cheaper, but runs the risk of altering the TF's functionality). Cross-linking is then reversed to free the bound DNA, which is then amplified, labeled with a fluorophore and dumped onto a DNA-array. The scanned array reveals the genomic regions bound by the TF. The resolution is around ~500 bp as a result of the sonication step.
In motif discovery, we are given a set of sequences that we suspect harbor binding sites for a given transcription factor. A typical scenario is data coming from expression experiments, in which we wish to analyze the promoter region of a bunch of genes that are up- or down-regulated under some condition. The goal of motif discovery is to detect the transcription factor binding motif (i.e. the sequence “pattern” bound by the TF), by assuming that it will be overrepresented in our sample of sequences. There are different strategies to accomplish this, but the standard approach uses expectation maximization (EM) and in particular Gibbs sampling or greedy search. Popular algorithms for motif discovery are MEME, Gibbs Motif Sampler or CONSENSUS. More recently, motif discovery algorithms that make use of phylogenetic foot-printing (the idea that TF-binding site will be conserved in the promoter sequences for the same gene in different species) have become available. These are not usually applied to complement experimental work, but can be used to provide a starting point for it. Popular algorithms include FootPrinter and PhyloGibbs.
The principle of ChIP-chip is simple. The first step is to cross-link the protein-DNA complex. This is done using a fixating agent, such as formaldehyde. The cross-linking can later be reversed with heat. Cross-linking kills the cell, giving a snapshot of the bound TF at a given time. The cell is then lysed, the DNA sheared by sonication and the chromatin[2] (TF-DNA complexes) is pulled down using an antibody (i.e. immunoprecipitated). If an antibody for the TF is available, then it is used; otherwise, the TF is tagged with an epitope targeted by commercially available antibodies (the latter option is cheaper, but runs the risk of altering the TF's functionality). Cross-linking is then reversed to free the bound DNA, which is then amplified, labeled with a fluorophore and dumped onto a DNA-array. The scanned array reveals the genomic regions bound by the TF. The resolution is around ~500 bp as a result of the sonication step.
In motif discovery, we are given a set of sequences that we suspect harbor binding sites for a given transcription factor. A typical scenario is data coming from expression experiments, in which we wish to analyze the promoter region of a bunch of genes that are up- or down-regulated under some condition. The goal of motif discovery is to detect the transcription factor binding motif (i.e. the sequence “pattern” bound by the TF), by assuming that it will be overrepresented in our sample of sequences. There are different strategies to accomplish this, but the standard approach uses expectation maximization (EM) and in particular Gibbs sampling or greedy search. Popular algorithms for motif discovery are MEME, Gibbs Motif Sampler or CONSENSUS. More recently, motif discovery algorithms that make use of phylogenetic foot-printing (the idea that TF-binding site will be conserved in the promoter sequences for the same gene in different species) have become available. These are not usually applied to complement experimental work, but can be used to provide a starting point for it. Popular algorithms include FootPrinter and PhyloGibbs.
The principle of ChIP-chip is simple. The first step is to cross-link the protein-DNA complex. This is done using a fixating agent, such as formaldehyde. The cross-linking can later be reversed with heat. Cross-linking kills the cell, giving a snapshot of the bound TF at a given time. The cell is then lysed, the DNA sheared by sonication and the chromatin[2] (TF-DNA complexes) is pulled down using an antibody (i.e. immunoprecipitated). If an antibody for the TF is available, then it is used; otherwise, the TF is tagged with an epitope targeted by commercially available antibodies (the latter option is cheaper, but runs the risk of altering the TF's functionality). Cross-linking is then reversed to free the bound DNA, which is then amplified, labeled with a fluorophore and dumped onto a DNA-array. The scanned array reveals the genomic regions bound by the TF. The resolution is around ~500 bp as a result of the sonication step.
In motif discovery, we are given a set of sequences that we suspect harbor binding sites for a given transcription factor. A typical scenario is data coming from expression experiments, in which we wish to analyze the promoter region of a bunch of genes that are up- or down-regulated under some condition. The goal of motif discovery is to detect the transcription factor binding motif (i.e. the sequence “pattern” bound by the TF), by assuming that it will be overrepresented in our sample of sequences. There are different strategies to accomplish this, but the standard approach uses expectation maximization (EM) and in particular Gibbs sampling or greedy search. Popular algorithms for motif discovery are MEME, Gibbs Motif Sampler or CONSENSUS. More recently, motif discovery algorithms that make use of phylogenetic foot-printing (the idea that TF-binding site will be conserved in the promoter sequences for the same gene in different species) have become available. These are not usually applied to complement experimental work, but can be used to provide a starting point for it. Popular algorithms include FootPrinter and PhyloGibbs.
The principle of ChIP-chip is simple. The first step is to cross-link the protein-DNA complex. This is done using a fixating agent, such as formaldehyde. The cross-linking can later be reversed with heat. Cross-linking kills the cell, giving a snapshot of the bound TF at a given time. The cell is then lysed, the DNA sheared by sonication and the chromatin[2] (TF-DNA complexes) is pulled down using an antibody (i.e. immunoprecipitated). If an antibody for the TF is available, then it is used; otherwise, the TF is tagged with an epitope targeted by commercially available antibodies (the latter option is cheaper, but runs the risk of altering the TF's functionality). Cross-linking is then reversed to free the bound DNA, which is then amplified, labeled with a fluorophore and dumped onto a DNA-array. The scanned array reveals the genomic regions bound by the TF. The resolution is around ~500 bp as a result of the sonication step.
In motif discovery, we are given a set of sequences that we suspect harbor binding sites for a given transcription factor. A typical scenario is data coming from expression experiments, in which we wish to analyze the promoter region of a bunch of genes that are up- or down-regulated under some condition. The goal of motif discovery is to detect the transcription factor binding motif (i.e. the sequence “pattern” bound by the TF), by assuming that it will be overrepresented in our sample of sequences. There are different strategies to accomplish this, but the standard approach uses expectation maximization (EM) and in particular Gibbs sampling or greedy search. Popular algorithms for motif discovery are MEME, Gibbs Motif Sampler or CONSENSUS. More recently, motif discovery algorithms that make use of phylogenetic foot-printing (the idea that TF-binding site will be conserved in the promoter sequences for the same gene in different species) have become available. These are not usually applied to complement experimental work, but can be used to provide a starting point for it. Popular algorithms include FootPrinter and PhyloGibbs.
The principle of ChIP-chip is simple. The first step is to cross-link the protein-DNA complex. This is done using a fixating agent, such as formaldehyde. The cross-linking can later be reversed with heat. Cross-linking kills the cell, giving a snapshot of the bound TF at a given time. The cell is then lysed, the DNA sheared by sonication and the chromatin[2] (TF-DNA complexes) is pulled down using an antibody (i.e. immunoprecipitated). If an antibody for the TF is available, then it is used; otherwise, the TF is tagged with an epitope targeted by commercially available antibodies (the latter option is cheaper, but runs the risk of altering the TF's functionality). Cross-linking is then reversed to free the bound DNA, which is then amplified, labeled with a fluorophore and dumped onto a DNA-array. The scanned array reveals the genomic regions bound by the TF. The resolution is around ~500 bp as a result of the sonication step.
In motif discovery, we are given a set of sequences that we suspect harbor binding sites for a given transcription factor. A typical scenario is data coming from expression experiments, in which we wish to analyze the promoter region of a bunch of genes that are up- or down-regulated under some condition. The goal of motif discovery is to detect the transcription factor binding motif (i.e. the sequence “pattern” bound by the TF), by assuming that it will be overrepresented in our sample of sequences. There are different strategies to accomplish this, but the standard approach uses expectation maximization (EM) and in particular Gibbs sampling or greedy search. Popular algorithms for motif discovery are MEME, Gibbs Motif Sampler or CONSENSUS. More recently, motif discovery algorithms that make use of phylogenetic foot-printing (the idea that TF-binding site will be conserved in the promoter sequences for the same gene in different species) have become available. These are not usually applied to complement experimental work, but can be used to provide a starting point for it. Popular algorithms include FootPrinter and PhyloGibbs.
The principle of ChIP-chip is simple. The first step is to cross-link the protein-DNA complex. This is done using a fixating agent, such as formaldehyde. The cross-linking can later be reversed with heat. Cross-linking kills the cell, giving a snapshot of the bound TF at a given time. The cell is then lysed, the DNA sheared by sonication and the chromatin[2] (TF-DNA complexes) is pulled down using an antibody (i.e. immunoprecipitated). If an antibody for the TF is available, then it is used; otherwise, the TF is tagged with an epitope targeted by commercially available antibodies (the latter option is cheaper, but runs the risk of altering the TF's functionality). Cross-linking is then reversed to free the bound DNA, which is then amplified, labeled with a fluorophore and dumped onto a DNA-array. The scanned array reveals the genomic regions bound by the TF. The resolution is around ~500 bp as a result of the sonication step.
In motif discovery, we are given a set of sequences that we suspect harbor binding sites for a given transcription factor. A typical scenario is data coming from expression experiments, in which we wish to analyze the promoter region of a bunch of genes that are up- or down-regulated under some condition. The goal of motif discovery is to detect the transcription factor binding motif (i.e. the sequence “pattern” bound by the TF), by assuming that it will be overrepresented in our sample of sequences. There are different strategies to accomplish this, but the standard approach uses expectation maximization (EM) and in particular Gibbs sampling or greedy search. Popular algorithms for motif discovery are MEME, Gibbs Motif Sampler or CONSENSUS. More recently, motif discovery algorithms that make use of phylogenetic foot-printing (the idea that TF-binding site will be conserved in the promoter sequences for the same gene in different species) have become available. These are not usually applied to complement experimental work, but can be used to provide a starting point for it. Popular algorithms include FootPrinter and PhyloGibbs.
The principle of ChIP-chip is simple. The first step is to cross-link the protein-DNA complex. This is done using a fixating agent, such as formaldehyde. The cross-linking can later be reversed with heat. Cross-linking kills the cell, giving a snapshot of the bound TF at a given time. The cell is then lysed, the DNA sheared by sonication and the chromatin[2] (TF-DNA complexes) is pulled down using an antibody (i.e. immunoprecipitated). If an antibody for the TF is available, then it is used; otherwise, the TF is tagged with an epitope targeted by commercially available antibodies (the latter option is cheaper, but runs the risk of altering the TF's functionality). Cross-linking is then reversed to free the bound DNA, which is then amplified, labeled with a fluorophore and dumped onto a DNA-array. The scanned array reveals the genomic regions bound by the TF. The resolution is around ~500 bp as a result of the sonication step.
In motif discovery, we are given a set of sequences that we suspect harbor binding sites for a given transcription factor. A typical scenario is data coming from expression experiments, in which we wish to analyze the promoter region of a bunch of genes that are up- or down-regulated under some condition. The goal of motif discovery is to detect the transcription factor binding motif (i.e. the sequence “pattern” bound by the TF), by assuming that it will be overrepresented in our sample of sequences. There are different strategies to accomplish this, but the standard approach uses expectation maximization (EM) and in particular Gibbs sampling or greedy search. Popular algorithms for motif discovery are MEME, Gibbs Motif Sampler or CONSENSUS. More recently, motif discovery algorithms that make use of phylogenetic foot-printing (the idea that TF-binding site will be conserved in the promoter sequences for the same gene in different species) have become available. These are not usually applied to complement experimental work, but can be used to provide a starting point for it. Popular algorithms include FootPrinter and PhyloGibbs.
The principle of ChIP-chip is simple. The first step is to cross-link the protein-DNA complex. This is done using a fixating agent, such as formaldehyde. The cross-linking can later be reversed with heat. Cross-linking kills the cell, giving a snapshot of the bound TF at a given time. The cell is then lysed, the DNA sheared by sonication and the chromatin[2] (TF-DNA complexes) is pulled down using an antibody (i.e. immunoprecipitated). If an antibody for the TF is available, then it is used; otherwise, the TF is tagged with an epitope targeted by commercially available antibodies (the latter option is cheaper, but runs the risk of altering the TF's functionality). Cross-linking is then reversed to free the bound DNA, which is then amplified, labeled with a fluorophore and dumped onto a DNA-array. The scanned array reveals the genomic regions bound by the TF. The resolution is around ~500 bp as a result of the sonication step.
In motif discovery, we are given a set of sequences that we suspect harbor binding sites for a given transcription factor. A typical scenario is data coming from expression experiments, in which we wish to analyze the promoter region of a bunch of genes that are up- or down-regulated under some condition. The goal of motif discovery is to detect the transcription factor binding motif (i.e. the sequence “pattern” bound by the TF), by assuming that it will be overrepresented in our sample of sequences. There are different strategies to accomplish this, but the standard approach uses expectation maximization (EM) and in particular Gibbs sampling or greedy search. Popular algorithms for motif discovery are MEME, Gibbs Motif Sampler or CONSENSUS. More recently, motif discovery algorithms that make use of phylogenetic foot-printing (the idea that TF-binding site will be conserved in the promoter sequences for the same gene in different species) have become available. These are not usually applied to complement experimental work, but can be used to provide a starting point for it. Popular algorithms include FootPrinter and PhyloGibbs.
The principle of ChIP-chip is simple. The first step is to cross-link the protein-DNA complex. This is done using a fixating agent, such as formaldehyde. The cross-linking can later be reversed with heat. Cross-linking kills the cell, giving a snapshot of the bound TF at a given time. The cell is then lysed, the DNA sheared by sonication and the chromatin[2] (TF-DNA complexes) is pulled down using an antibody (i.e. immunoprecipitated). If an antibody for the TF is available, then it is used; otherwise, the TF is tagged with an epitope targeted by commercially available antibodies (the latter option is cheaper, but runs the risk of altering the TF's functionality). Cross-linking is then reversed to free the bound DNA, which is then amplified, labeled with a fluorophore and dumped onto a DNA-array. The scanned array reveals the genomic regions bound by the TF. The resolution is around ~500 bp as a result of the sonication step.
In motif discovery, we are given a set of sequences that we suspect harbor binding sites for a given transcription factor. A typical scenario is data coming from expression experiments, in which we wish to analyze the promoter region of a bunch of genes that are up- or down-regulated under some condition. The goal of motif discovery is to detect the transcription factor binding motif (i.e. the sequence “pattern” bound by the TF), by assuming that it will be overrepresented in our sample of sequences. There are different strategies to accomplish this, but the standard approach uses expectation maximization (EM) and in particular Gibbs sampling or greedy search. Popular algorithms for motif discovery are MEME, Gibbs Motif Sampler or CONSENSUS. More recently, motif discovery algorithms that make use of phylogenetic foot-printing (the idea that TF-binding site will be conserved in the promoter sequences for the same gene in different species) have become available. These are not usually applied to complement experimental work, but can be used to provide a starting point for it. Popular algorithms include FootPrinter and PhyloGibbs.
The principle of ChIP-chip is simple. The first step is to cross-link the protein-DNA complex. This is done using a fixating agent, such as formaldehyde. The cross-linking can later be reversed with heat. Cross-linking kills the cell, giving a snapshot of the bound TF at a given time. The cell is then lysed, the DNA sheared by sonication and the chromatin[2] (TF-DNA complexes) is pulled down using an antibody (i.e. immunoprecipitated). If an antibody for the TF is available, then it is used; otherwise, the TF is tagged with an epitope targeted by commercially available antibodies (the latter option is cheaper, but runs the risk of altering the TF's functionality). Cross-linking is then reversed to free the bound DNA, which is then amplified, labeled with a fluorophore and dumped onto a DNA-array. The scanned array reveals the genomic regions bound by the TF. The resolution is around ~500 bp as a result of the sonication step.
In motif discovery, we are given a set of sequences that we suspect harbor binding sites for a given transcription factor. A typical scenario is data coming from expression experiments, in which we wish to analyze the promoter region of a bunch of genes that are up- or down-regulated under some condition. The goal of motif discovery is to detect the transcription factor binding motif (i.e. the sequence “pattern” bound by the TF), by assuming that it will be overrepresented in our sample of sequences. There are different strategies to accomplish this, but the standard approach uses expectation maximization (EM) and in particular Gibbs sampling or greedy search. Popular algorithms for motif discovery are MEME, Gibbs Motif Sampler or CONSENSUS. More recently, motif discovery algorithms that make use of phylogenetic foot-printing (the idea that TF-binding site will be conserved in the promoter sequences for the same gene in different species) have become available. These are not usually applied to complement experimental work, but can be used to provide a starting point for it. Popular algorithms include FootPrinter and PhyloGibbs.
The principle of ChIP-chip is simple. The first step is to cross-link the protein-DNA complex. This is done using a fixating agent, such as formaldehyde. The cross-linking can later be reversed with heat. Cross-linking kills the cell, giving a snapshot of the bound TF at a given time. The cell is then lysed, the DNA sheared by sonication and the chromatin[2] (TF-DNA complexes) is pulled down using an antibody (i.e. immunoprecipitated). If an antibody for the TF is available, then it is used; otherwise, the TF is tagged with an epitope targeted by commercially available antibodies (the latter option is cheaper, but runs the risk of altering the TF's functionality). Cross-linking is then reversed to free the bound DNA, which is then amplified, labeled with a fluorophore and dumped onto a DNA-array. The scanned array reveals the genomic regions bound by the TF. The resolution is around ~500 bp as a result of the sonication step.
In motif discovery, we are given a set of sequences that we suspect harbor binding sites for a given transcription factor. A typical scenario is data coming from expression experiments, in which we wish to analyze the promoter region of a bunch of genes that are up- or down-regulated under some condition. The goal of motif discovery is to detect the transcription factor binding motif (i.e. the sequence “pattern” bound by the TF), by assuming that it will be overrepresented in our sample of sequences. There are different strategies to accomplish this, but the standard approach uses expectation maximization (EM) and in particular Gibbs sampling or greedy search. Popular algorithms for motif discovery are MEME, Gibbs Motif Sampler or CONSENSUS. More recently, motif discovery algorithms that make use of phylogenetic foot-printing (the idea that TF-binding site will be conserved in the promoter sequences for the same gene in different species) have become available. These are not usually applied to complement experimental work, but can be used to provide a starting point for it. Popular algorithms include FootPrinter and PhyloGibbs.
The principle of ChIP-chip is simple. The first step is to cross-link the protein-DNA complex. This is done using a fixating agent, such as formaldehyde. The cross-linking can later be reversed with heat. Cross-linking kills the cell, giving a snapshot of the bound TF at a given time. The cell is then lysed, the DNA sheared by sonication and the chromatin[2] (TF-DNA complexes) is pulled down using an antibody (i.e. immunoprecipitated). If an antibody for the TF is available, then it is used; otherwise, the TF is tagged with an epitope targeted by commercially available antibodies (the latter option is cheaper, but runs the risk of altering the TF's functionality). Cross-linking is then reversed to free the bound DNA, which is then amplified, labeled with a fluorophore and dumped onto a DNA-array. The scanned array reveals the genomic regions bound by the TF. The resolution is around ~500 bp as a result of the sonication step.
In motif discovery, we are given a set of sequences that we suspect harbor binding sites for a given transcription factor. A typical scenario is data coming from expression experiments, in which we wish to analyze the promoter region of a bunch of genes that are up- or down-regulated under some condition. The goal of motif discovery is to detect the transcription factor binding motif (i.e. the sequence “pattern” bound by the TF), by assuming that it will be overrepresented in our sample of sequences. There are different strategies to accomplish this, but the standard approach uses expectation maximization (EM) and in particular Gibbs sampling or greedy search. Popular algorithms for motif discovery are MEME, Gibbs Motif Sampler or CONSENSUS. More recently, motif discovery algorithms that make use of phylogenetic foot-printing (the idea that TF-binding site will be conserved in the promoter sequences for the same gene in different species) have become available. These are not usually applied to complement experimental work, but can be used to provide a starting point for it. Popular algorithms include FootPrinter and PhyloGibbs.
The principle of ChIP-chip is simple. The first step is to cross-link the protein-DNA complex. This is done using a fixating agent, such as formaldehyde. The cross-linking can later be reversed with heat. Cross-linking kills the cell, giving a snapshot of the bound TF at a given time. The cell is then lysed, the DNA sheared by sonication and the chromatin[2] (TF-DNA complexes) is pulled down using an antibody (i.e. immunoprecipitated). If an antibody for the TF is available, then it is used; otherwise, the TF is tagged with an epitope targeted by commercially available antibodies (the latter option is cheaper, but runs the risk of altering the TF's functionality). Cross-linking is then reversed to free the bound DNA, which is then amplified, labeled with a fluorophore and dumped onto a DNA-array. The scanned array reveals the genomic regions bound by the TF. The resolution is around ~500 bp as a result of the sonication step.
In motif discovery, we are given a set of sequences that we suspect harbor binding sites for a given transcription factor. A typical scenario is data coming from expression experiments, in which we wish to analyze the promoter region of a bunch of genes that are up- or down-regulated under some condition. The goal of motif discovery is to detect the transcription factor binding motif (i.e. the sequence “pattern” bound by the TF), by assuming that it will be overrepresented in our sample of sequences. There are different strategies to accomplish this, but the standard approach uses expectation maximization (EM) and in particular Gibbs sampling or greedy search. Popular algorithms for motif discovery are MEME, Gibbs Motif Sampler or CONSENSUS. More recently, motif discovery algorithms that make use of phylogenetic foot-printing (the idea that TF-binding site will be conserved in the promoter sequences for the same gene in different species) have become available. These are not usually applied to complement experimental work, but can be used to provide a starting point for it. Popular algorithms include FootPrinter and PhyloGibbs.
The principle of ChIP-chip is simple. The first step is to cross-link the protein-DNA complex. This is done using a fixating agent, such as formaldehyde. The cross-linking can later be reversed with heat. Cross-linking kills the cell, giving a snapshot of the bound TF at a given time. The cell is then lysed, the DNA sheared by sonication and the chromatin[2] (TF-DNA complexes) is pulled down using an antibody (i.e. immunoprecipitated). If an antibody for the TF is available, then it is used; otherwise, the TF is tagged with an epitope targeted by commercially available antibodies (the latter option is cheaper, but runs the risk of altering the TF's functionality). Cross-linking is then reversed to free the bound DNA, which is then amplified, labeled with a fluorophore and dumped onto a DNA-array. The scanned array reveals the genomic regions bound by the TF. The resolution is around ~500 bp as a result of the sonication step.
In motif discovery, we are given a set of sequences that we suspect harbor binding sites for a given transcription factor. A typical scenario is data coming from expression experiments, in which we wish to analyze the promoter region of a bunch of genes that are up- or down-regulated under some condition. The goal of motif discovery is to detect the transcription factor binding motif (i.e. the sequence “pattern” bound by the TF), by assuming that it will be overrepresented in our sample of sequences. There are different strategies to accomplish this, but the standard approach uses expectation maximization (EM) and in particular Gibbs sampling or greedy search. Popular algorithms for motif discovery are MEME, Gibbs Motif Sampler or CONSENSUS. More recently, motif discovery algorithms that make use of phylogenetic foot-printing (the idea that TF-binding site will be conserved in the promoter sequences for the same gene in different species) have become available. These are not usually applied to complement experimental work, but can be used to provide a starting point for it. Popular algorithms include FootPrinter and PhyloGibbs.
The principle of ChIP-chip is simple. The first step is to cross-link the protein-DNA complex. This is done using a fixating agent, such as formaldehyde. The cross-linking can later be reversed with heat. Cross-linking kills the cell, giving a snapshot of the bound TF at a given time. The cell is then lysed, the DNA sheared by sonication and the chromatin[2] (TF-DNA complexes) is pulled down using an antibody (i.e. immunoprecipitated). If an antibody for the TF is available, then it is used; otherwise, the TF is tagged with an epitope targeted by commercially available antibodies (the latter option is cheaper, but runs the risk of altering the TF's functionality). Cross-linking is then reversed to free the bound DNA, which is then amplified, labeled with a fluorophore and dumped onto a DNA-array. The scanned array reveals the genomic regions bound by the TF. The resolution is around ~500 bp as a result of the sonication step.
In motif discovery, we are given a set of sequences that we suspect harbor binding sites for a given transcription factor. A typical scenario is data coming from expression experiments, in which we wish to analyze the promoter region of a bunch of genes that are up- or down-regulated under some condition. The goal of motif discovery is to detect the transcription factor binding motif (i.e. the sequence “pattern” bound by the TF), by assuming that it will be overrepresented in our sample of sequences. There are different strategies to accomplish this, but the standard approach uses expectation maximization (EM) and in particular Gibbs sampling or greedy search. Popular algorithms for motif discovery are MEME, Gibbs Motif Sampler or CONSENSUS. More recently, motif discovery algorithms that make use of phylogenetic foot-printing (the idea that TF-binding site will be conserved in the promoter sequences for the same gene in different species) have become available. These are not usually applied to complement experimental work, but can be used to provide a starting point for it. Popular algorithms include FootPrinter and PhyloGibbs.
The principle of ChIP-chip is simple. The first step is to cross-link the protein-DNA complex. This is done using a fixating agent, such as formaldehyde. The cross-linking can later be reversed with heat. Cross-linking kills the cell, giving a snapshot of the bound TF at a given time. The cell is then lysed, the DNA sheared by sonication and the chromatin[2] (TF-DNA complexes) is pulled down using an antibody (i.e. immunoprecipitated). If an antibody for the TF is available, then it is used; otherwise, the TF is tagged with an epitope targeted by commercially available antibodies (the latter option is cheaper, but runs the risk of altering the TF's functionality). Cross-linking is then reversed to free the bound DNA, which is then amplified, labeled with a fluorophore and dumped onto a DNA-array. The scanned array reveals the genomic regions bound by the TF. The resolution is around ~500 bp as a result of the sonication step.
In motif discovery, we are given a set of sequences that we suspect harbor binding sites for a given transcription factor. A typical scenario is data coming from expression experiments, in which we wish to analyze the promoter region of a bunch of genes that are up- or down-regulated under some condition. The goal of motif discovery is to detect the transcription factor binding motif (i.e. the sequence “pattern” bound by the TF), by assuming that it will be overrepresented in our sample of sequences. There are different strategies to accomplish this, but the standard approach uses expectation maximization (EM) and in particular Gibbs sampling or greedy search. Popular algorithms for motif discovery are MEME, Gibbs Motif Sampler or CONSENSUS. More recently, motif discovery algorithms that make use of phylogenetic foot-printing (the idea that TF-binding site will be conserved in the promoter sequences for the same gene in different species) have become available. These are not usually applied to complement experimental work, but can be used to provide a starting point for it. Popular algorithms include FootPrinter and PhyloGibbs.
The principle of ChIP-chip is simple. The first step is to cross-link the protein-DNA complex. This is done using a fixating agent, such as formaldehyde. The cross-linking can later be reversed with heat. Cross-linking kills the cell, giving a snapshot of the bound TF at a given time. The cell is then lysed, the DNA sheared by sonication and the chromatin[2] (TF-DNA complexes) is pulled down using an antibody (i.e. immunoprecipitated). If an antibody for the TF is available, then it is used; otherwise, the TF is tagged with an epitope targeted by commercially available antibodies (the latter option is cheaper, but runs the risk of altering the TF's functionality). Cross-linking is then reversed to free the bound DNA, which is then amplified, labeled with a fluorophore and dumped onto a DNA-array. The scanned array reveals the genomic regions bound by the TF. The resolution is around ~500 bp as a result of the sonication step.
In motif discovery, we are given a set of sequences that we suspect harbor binding sites for a given transcription factor. A typical scenario is data coming from expression experiments, in which we wish to analyze the promoter region of a bunch of genes that are up- or down-regulated under some condition. The goal of motif discovery is to detect the transcription factor binding motif (i.e. the sequence “pattern” bound by the TF), by assuming that it will be overrepresented in our sample of sequences. There are different strategies to accomplish this, but the standard approach uses expectation maximization (EM) and in particular Gibbs sampling or greedy search. Popular algorithms for motif discovery are MEME, Gibbs Motif Sampler or CONSENSUS. More recently, motif discovery algorithms that make use of phylogenetic foot-printing (the idea that TF-binding site will be conserved in the promoter sequences for the same gene in different species) have become available. These are not usually applied to complement experimental work, but can be used to provide a starting point for it. Popular algorithms include FootPrinter and PhyloGibbs.
The principle of ChIP-chip is simple. The first step is to cross-link the protein-DNA complex. This is done using a fixating agent, such as formaldehyde. The cross-linking can later be reversed with heat. Cross-linking kills the cell, giving a snapshot of the bound TF at a given time. The cell is then lysed, the DNA sheared by sonication and the chromatin[2] (TF-DNA complexes) is pulled down using an antibody (i.e. immunoprecipitated). If an antibody for the TF is available, then it is used; otherwise, the TF is tagged with an epitope targeted by commercially available antibodies (the latter option is cheaper, but runs the risk of altering the TF's functionality). Cross-linking is then reversed to free the bound DNA, which is then amplified, labeled with a fluorophore and dumped onto a DNA-array. The scanned array reveals the genomic regions bound by the TF. The resolution is around ~500 bp as a result of the sonication step.
In motif discovery, we are given a set of sequences that we suspect harbor binding sites for a given transcription factor. A typical scenario is data coming from expression experiments, in which we wish to analyze the promoter region of a bunch of genes that are up- or down-regulated under some condition. The goal of motif discovery is to detect the transcription factor binding motif (i.e. the sequence “pattern” bound by the TF), by assuming that it will be overrepresented in our sample of sequences. There are different strategies to accomplish this, but the standard approach uses expectation maximization (EM) and in particular Gibbs sampling or greedy search. Popular algorithms for motif discovery are MEME, Gibbs Motif Sampler or CONSENSUS. More recently, motif discovery algorithms that make use of phylogenetic foot-printing (the idea that TF-binding site will be conserved in the promoter sequences for the same gene in different species) have become available. These are not usually applied to complement experimental work, but can be used to provide a starting point for it. Popular algorithms include FootPrinter and PhyloGibbs.
The principle of ChIP-chip is simple. The first step is to cross-link the protein-DNA complex. This is done using a fixating agent, such as formaldehyde. The cross-linking can later be reversed with heat. Cross-linking kills the cell, giving a snapshot of the bound TF at a given time. The cell is then lysed, the DNA sheared by sonication and the chromatin[2] (TF-DNA complexes) is pulled down using an antibody (i.e. immunoprecipitated). If an antibody for the TF is available, then it is used; otherwise, the TF is tagged with an epitope targeted by commercially available antibodies (the latter option is cheaper, but runs the risk of altering the TF's functionality). Cross-linking is then reversed to free the bound DNA, which is then amplified, labeled with a fluorophore and dumped onto a DNA-array. The scanned array reveals the genomic regions bound by the TF. The resolution is around ~500 bp as a result of the sonication step.
In motif discovery, we are given a set of sequences that we suspect harbor binding sites for a given transcription factor. A typical scenario is data coming from expression experiments, in which we wish to analyze the promoter region of a bunch of genes that are up- or down-regulated under some condition. The goal of motif discovery is to detect the transcription factor binding motif (i.e. the sequence “pattern” bound by the TF), by assuming that it will be overrepresented in our sample of sequences. There are different strategies to accomplish this, but the standard approach uses expectation maximization (EM) and in particular Gibbs sampling or greedy search. Popular algorithms for motif discovery are MEME, Gibbs Motif Sampler or CONSENSUS. More recently, motif discovery algorithms that make use of phylogenetic foot-printing (the idea that TF-binding site will be conserved in the promoter sequences for the same gene in different species) have become available. These are not usually applied to complement experimental work, but can be used to provide a starting point for it. Popular algorithms include FootPrinter and PhyloGibbs.
The principle of ChIP-chip is simple. The first step is to cross-link the protein-DNA complex. This is done using a fixating agent, such as formaldehyde. The cross-linking can later be reversed with heat. Cross-linking kills the cell, giving a snapshot of the bound TF at a given time. The cell is then lysed, the DNA sheared by sonication and the chromatin[2] (TF-DNA complexes) is pulled down using an antibody (i.e. immunoprecipitated). If an antibody for the TF is available, then it is used; otherwise, the TF is tagged with an epitope targeted by commercially available antibodies (the latter option is cheaper, but runs the risk of altering the TF's functionality). Cross-linking is then reversed to free the bound DNA, which is then amplified, labeled with a fluorophore and dumped onto a DNA-array. The scanned array reveals the genomic regions bound by the TF. The resolution is around ~500 bp as a result of the sonication step.
In motif discovery, we are given a set of sequences that we suspect harbor binding sites for a given transcription factor. A typical scenario is data coming from expression experiments, in which we wish to analyze the promoter region of a bunch of genes that are up- or down-regulated under some condition. The goal of motif discovery is to detect the transcription factor binding motif (i.e. the sequence “pattern” bound by the TF), by assuming that it will be overrepresented in our sample of sequences. There are different strategies to accomplish this, but the standard approach uses expectation maximization (EM) and in particular Gibbs sampling or greedy search. Popular algorithms for motif discovery are MEME, Gibbs Motif Sampler or CONSENSUS. More recently, motif discovery algorithms that make use of phylogenetic foot-printing (the idea that TF-binding site will be conserved in the promoter sequences for the same gene in different species) have become available. These are not usually applied to complement experimental work, but can be used to provide a starting point for it. Popular algorithms include FootPrinter and PhyloGibbs.
The principle of ChIP-chip is simple. The first step is to cross-link the protein-DNA complex. This is done using a fixating agent, such as formaldehyde. The cross-linking can later be reversed with heat. Cross-linking kills the cell, giving a snapshot of the bound TF at a given time. The cell is then lysed, the DNA sheared by sonication and the chromatin[2] (TF-DNA complexes) is pulled down using an antibody (i.e. immunoprecipitated). If an antibody for the TF is available, then it is used; otherwise, the TF is tagged with an epitope targeted by commercially available antibodies (the latter option is cheaper, but runs the risk of altering the TF's functionality). Cross-linking is then reversed to free the bound DNA, which is then amplified, labeled with a fluorophore and dumped onto a DNA-array. The scanned array reveals the genomic regions bound by the TF. The resolution is around ~500 bp as a result of the sonication step.
In motif discovery, we are given a set of sequences that we suspect harbor binding sites for a given transcription factor. A typical scenario is data coming from expression experiments, in which we wish to analyze the promoter region of a bunch of genes that are up- or down-regulated under some condition. The goal of motif discovery is to detect the transcription factor binding motif (i.e. the sequence “pattern” bound by the TF), by assuming that it will be overrepresented in our sample of sequences. There are different strategies to accomplish this, but the standard approach uses expectation maximization (EM) and in particular Gibbs sampling or greedy search. Popular algorithms for motif discovery are MEME, Gibbs Motif Sampler or CONSENSUS. More recently, motif discovery algorithms that make use of phylogenetic foot-printing (the idea that TF-binding site will be conserved in the promoter sequences for the same gene in different species) have become available. These are not usually applied to complement experimental work, but can be used to provide a starting point for it. Popular algorithms include FootPrinter and PhyloGibbs.
The principle of ChIP-chip is simple. The first step is to cross-link the protein-DNA complex. This is done using a fixating agent, such as formaldehyde. The cross-linking can later be reversed with heat. Cross-linking kills the cell, giving a snapshot of the bound TF at a given time. The cell is then lysed, the DNA sheared by sonication and the chromatin[2] (TF-DNA complexes) is pulled down using an antibody (i.e. immunoprecipitated). If an antibody for the TF is available, then it is used; otherwise, the TF is tagged with an epitope targeted by commercially available antibodies (the latter option is cheaper, but runs the risk of altering the TF's functionality). Cross-linking is then reversed to free the bound DNA, which is then amplified, labeled with a fluorophore and dumped onto a DNA-array. The scanned array reveals the genomic regions bound by the TF. The resolution is around ~500 bp as a result of the sonication step.
In motif discovery, we are given a set of sequences that we suspect harbor binding sites for a given transcription factor. A typical scenario is data coming from expression experiments, in which we wish to analyze the promoter region of a bunch of genes that are up- or down-regulated under some condition. The goal of motif discovery is to detect the transcription factor binding motif (i.e. the sequence “pattern” bound by the TF), by assuming that it will be overrepresented in our sample of sequences. There are different strategies to accomplish this, but the standard approach uses expectation maximization (EM) and in particular Gibbs sampling or greedy search. Popular algorithms for motif discovery are MEME, Gibbs Motif Sampler or CONSENSUS. More recently, motif discovery algorithms that make use of phylogenetic foot-printing (the idea that TF-binding site will be conserved in the promoter sequences for the same gene in different species) have become available. These are not usually applied to complement experimental work, but can be used to provide a starting point for it. Popular algorithms include FootPrinter and PhyloGibbs.
The principle of ChIP-chip is simple. The first step is to cross-link the protein-DNA complex. This is done using a fixating agent, such as formaldehyde. The cross-linking can later be reversed with heat. Cross-linking kills the cell, giving a snapshot of the bound TF at a given time. The cell is then lysed, the DNA sheared by sonication and the chromatin[2] (TF-DNA complexes) is pulled down using an antibody (i.e. immunoprecipitated). If an antibody for the TF is available, then it is used; otherwise, the TF is tagged with an epitope targeted by commercially available antibodies (the latter option is cheaper, but runs the risk of altering the TF's functionality). Cross-linking is then reversed to free the bound DNA, which is then amplified, labeled with a fluorophore and dumped onto a DNA-array. The scanned array reveals the genomic regions bound by the TF. The resolution is around ~500 bp as a result of the sonication step.
In motif discovery, we are given a set of sequences that we suspect harbor binding sites for a given transcription factor. A typical scenario is data coming from expression experiments, in which we wish to analyze the promoter region of a bunch of genes that are up- or down-regulated under some condition. The goal of motif discovery is to detect the transcription factor binding motif (i.e. the sequence “pattern” bound by the TF), by assuming that it will be overrepresented in our sample of sequences. There are different strategies to accomplish this, but the standard approach uses expectation maximization (EM) and in particular Gibbs sampling or greedy search. Popular algorithms for motif discovery are MEME, Gibbs Motif Sampler or CONSENSUS. More recently, motif discovery algorithms that make use of phylogenetic foot-printing (the idea that TF-binding site will be conserved in the promoter sequences for the same gene in different species) have become available. These are not usually applied to complement experimental work, but can be used to provide a starting point for it. Popular algorithms include FootPrinter and PhyloGibbs.
The principle of ChIP-chip is simple. The first step is to cross-link the protein-DNA complex. This is done using a fixating agent, such as formaldehyde. The cross-linking can later be reversed with heat. Cross-linking kills the cell, giving a snapshot of the bound TF at a given time. The cell is then lysed, the DNA sheared by sonication and the chromatin[2] (TF-DNA complexes) is pulled down using an antibody (i.e. immunoprecipitated). If an antibody for the TF is available, then it is used; otherwise, the TF is tagged with an epitope targeted by commercially available antibodies (the latter option is cheaper, but runs the risk of altering the TF's functionality). Cross-linking is then reversed to free the bound DNA, which is then amplified, labeled with a fluorophore and dumped onto a DNA-array. The scanned array reveals the genomic regions bound by the TF. The resolution is around ~500 bp as a result of the sonication step.
In motif discovery, we are given a set of sequences that we suspect harbor binding sites for a given transcription factor. A typical scenario is data coming from expression experiments, in which we wish to analyze the promoter region of a bunch of genes that are up- or down-regulated under some condition. The goal of motif discovery is to detect the transcription factor binding motif (i.e. the sequence “pattern” bound by the TF), by assuming that it will be overrepresented in our sample of sequences. There are different strategies to accomplish this, but the standard approach uses expectation maximization (EM) and in particular Gibbs sampling or greedy search. Popular algorithms for motif discovery are MEME, Gibbs Motif Sampler or CONSENSUS. More recently, motif discovery algorithms that make use of phylogenetic foot-printing (the idea that TF-binding site will be conserved in the promoter sequences for the same gene in different species) have become available. These are not usually applied to complement experimental work, but can be used to provide a starting point for it. Popular algorithms include FootPrinter and PhyloGibbs.
The principle of ChIP-chip is simple. The first step is to cross-link the protein-DNA complex. This is done using a fixating agent, such as formaldehyde. The cross-linking can later be reversed with heat. Cross-linking kills the cell, giving a snapshot of the bound TF at a given time. The cell is then lysed, the DNA sheared by sonication and the chromatin[2] (TF-DNA complexes) is pulled down using an antibody (i.e. immunoprecipitated). If an antibody for the TF is available, then it is used; otherwise, the TF is tagged with an epitope targeted by commercially available antibodies (the latter option is cheaper, but runs the risk of altering the TF's functionality). Cross-linking is then reversed to free the bound DNA, which is then amplified, labeled with a fluorophore and dumped onto a DNA-array. The scanned array reveals the genomic regions bound by the TF. The resolution is around ~500 bp as a result of the sonication step.
In motif discovery, we are given a set of sequences that we suspect harbor binding sites for a given transcription factor. A typical scenario is data coming from expression experiments, in which we wish to analyze the promoter region of a bunch of genes that are up- or down-regulated under some condition. The goal of motif discovery is to detect the transcription factor binding motif (i.e. the sequence “pattern” bound by the TF), by assuming that it will be overrepresented in our sample of sequences. There are different strategies to accomplish this, but the standard approach uses expectation maximization (EM) and in particular Gibbs sampling or greedy search. Popular algorithms for motif discovery are MEME, Gibbs Motif Sampler or CONSENSUS. More recently, motif discovery algorithms that make use of phylogenetic foot-printing (the idea that TF-binding site will be conserved in the promoter sequences for the same gene in different species) have become available. These are not usually applied to complement experimental work, but can be used to provide a starting point for it. Popular algorithms include FootPrinter and PhyloGibbs.
The principle of ChIP-chip is simple. The first step is to cross-link the protein-DNA complex. This is done using a fixating agent, such as formaldehyde. The cross-linking can later be reversed with heat. Cross-linking kills the cell, giving a snapshot of the bound TF at a given time. The cell is then lysed, the DNA sheared by sonication and the chromatin[2] (TF-DNA complexes) is pulled down using an antibody (i.e. immunoprecipitated). If an antibody for the TF is available, then it is used; otherwise, the TF is tagged with an epitope targeted by commercially available antibodies (the latter option is cheaper, but runs the risk of altering the TF's functionality). Cross-linking is then reversed to free the bound DNA, which is then amplified, labeled with a fluorophore and dumped onto a DNA-array. The scanned array reveals the genomic regions bound by the TF. The resolution is around ~500 bp as a result of the sonication step.
In motif discovery, we are given a set of sequences that we suspect harbor binding sites for a given transcription factor. A typical scenario is data coming from expression experiments, in which we wish to analyze the promoter region of a bunch of genes that are up- or down-regulated under some condition. The goal of motif discovery is to detect the transcription factor binding motif (i.e. the sequence “pattern” bound by the TF), by assuming that it will be overrepresented in our sample of sequences. There are different strategies to accomplish this, but the standard approach uses expectation maximization (EM) and in particular Gibbs sampling or greedy search. Popular algorithms for motif discovery are MEME, Gibbs Motif Sampler or CONSENSUS. More recently, motif discovery algorithms that make use of phylogenetic foot-printing (the idea that TF-binding site will be conserved in the promoter sequences for the same gene in different species) have become available. These are not usually applied to complement experimental work, but can be used to provide a starting point for it. Popular algorithms include FootPrinter and PhyloGibbs.
The principle of ChIP-chip is simple. The first step is to cross-link the protein-DNA complex. This is done using a fixating agent, such as formaldehyde. The cross-linking can later be reversed with heat. Cross-linking kills the cell, giving a snapshot of the bound TF at a given time. The cell is then lysed, the DNA sheared by sonication and the chromatin[2] (TF-DNA complexes) is pulled down using an antibody (i.e. immunoprecipitated). If an antibody for the TF is available, then it is used; otherwise, the TF is tagged with an epitope targeted by commercially available antibodies (the latter option is cheaper, but runs the risk of altering the TF's functionality). Cross-linking is then reversed to free the bound DNA, which is then amplified, labeled with a fluorophore and dumped onto a DNA-array. The scanned array reveals the genomic regions bound by the TF. The resolution is around ~500 bp as a result of the sonication step.
In motif discovery, we are given a set of sequences that we suspect harbor binding sites for a given transcription factor. A typical scenario is data coming from expression experiments, in which we wish to analyze the promoter region of a bunch of genes that are up- or down-regulated under some condition. The goal of motif discovery is to detect the transcription factor binding motif (i.e. the sequence “pattern” bound by the TF), by assuming that it will be overrepresented in our sample of sequences. There are different strategies to accomplish this, but the standard approach uses expectation maximization (EM) and in particular Gibbs sampling or greedy search. Popular algorithms for motif discovery are MEME, Gibbs Motif Sampler or CONSENSUS. More recently, motif discovery algorithms that make use of phylogenetic foot-printing (the idea that TF-binding site will be conserved in the promoter sequences for the same gene in different species) have become available. These are not usually applied to complement experimental work, but can be used to provide a starting point for it. Popular algorithms include FootPrinter and PhyloGibbs.
The principle of ChIP-chip is simple. The first step is to cross-link the protein-DNA complex. This is done using a fixating agent, such as formaldehyde. The cross-linking can later be reversed with heat. Cross-linking kills the cell, giving a snapshot of the bound TF at a given time. The cell is then lysed, the DNA sheared by sonication and the chromatin[2] (TF-DNA complexes) is pulled down using an antibody (i.e. immunoprecipitated). If an antibody for the TF is available, then it is used; otherwise, the TF is tagged with an epitope targeted by commercially available antibodies (the latter option is cheaper, but runs the risk of altering the TF's functionality). Cross-linking is then reversed to free the bound DNA, which is then amplified, labeled with a fluorophore and dumped onto a DNA-array. The scanned array reveals the genomic regions bound by the TF. The resolution is around ~500 bp as a result of the sonication step.
In motif discovery, we are given a set of sequences that we suspect harbor binding sites for a given transcription factor. A typical scenario is data coming from expression experiments, in which we wish to analyze the promoter region of a bunch of genes that are up- or down-regulated under some condition. The goal of motif discovery is to detect the transcription factor binding motif (i.e. the sequence “pattern” bound by the TF), by assuming that it will be overrepresented in our sample of sequences. There are different strategies to accomplish this, but the standard approach uses expectation maximization (EM) and in particular Gibbs sampling or greedy search. Popular algorithms for motif discovery are MEME, Gibbs Motif Sampler or CONSENSUS. More recently, motif discovery algorithms that make use of phylogenetic foot-printing (the idea that TF-binding site will be conserved in the promoter sequences for the same gene in different species) have become available. These are not usually applied to complement experimental work, but can be used to provide a starting point for it. Popular algorithms include FootPrinter and PhyloGibbs.
The principle of ChIP-chip is simple. The first step is to cross-link the protein-DNA complex. This is done using a fixating agent, such as formaldehyde. The cross-linking can later be reversed with heat. Cross-linking kills the cell, giving a snapshot of the bound TF at a given time. The cell is then lysed, the DNA sheared by sonication and the chromatin[2] (TF-DNA complexes) is pulled down using an antibody (i.e. immunoprecipitated). If an antibody for the TF is available, then it is used; otherwise, the TF is tagged with an epitope targeted by commercially available antibodies (the latter option is cheaper, but runs the risk of altering the TF's functionality). Cross-linking is then reversed to free the bound DNA, which is then amplified, labeled with a fluorophore and dumped onto a DNA-array. The scanned array reveals the genomic regions bound by the TF. The resolution is around ~500 bp as a result of the sonication step.
In motif discovery, we are given a set of sequences that we suspect harbor binding sites for a given transcription factor. A typical scenario is data coming from expression experiments, in which we wish to analyze the promoter region of a bunch of genes that are up- or down-regulated under some condition. The goal of motif discovery is to detect the transcription factor binding motif (i.e. the sequence “pattern” bound by the TF), by assuming that it will be overrepresented in our sample of sequences. There are different strategies to accomplish this, but the standard approach uses expectation maximization (EM) and in particular Gibbs sampling or greedy search. Popular algorithms for motif discovery are MEME, Gibbs Motif Sampler or CONSENSUS. More recently, motif discovery algorithms that make use of phylogenetic foot-printing (the idea that TF-binding site will be conserved in the promoter sequences for the same gene in different species) have become available. These are not usually applied to complement experimental work, but can be used to provide a starting point for it. Popular algorithms include FootPrinter and PhyloGibbs.
The principle of ChIP-chip is simple. The first step is to cross-link the protein-DNA complex. This is done using a fixating agent, such as formaldehyde. The cross-linking can later be reversed with heat. Cross-linking kills the cell, giving a snapshot of the bound TF at a given time. The cell is then lysed, the DNA sheared by sonication and the chromatin[2] (TF-DNA complexes) is pulled down using an antibody (i.e. immunoprecipitated). If an antibody for the TF is available, then it is used; otherwise, the TF is tagged with an epitope targeted by commercially available antibodies (the latter option is cheaper, but runs the risk of altering the TF's functionality). Cross-linking is then reversed to free the bound DNA, which is then amplified, labeled with a fluorophore and dumped onto a DNA-array. The scanned array reveals the genomic regions bound by the TF. The resolution is around ~500 bp as a result of the sonication step.
In motif discovery, we are given a set of sequences that we suspect harbor binding sites for a given transcription factor. A typical scenario is data coming from expression experiments, in which we wish to analyze the promoter region of a bunch of genes that are up- or down-regulated under some condition. The goal of motif discovery is to detect the transcription factor binding motif (i.e. the sequence “pattern” bound by the TF), by assuming that it will be overrepresented in our sample of sequences. There are different strategies to accomplish this, but the standard approach uses expectation maximization (EM) and in particular Gibbs sampling or greedy search. Popular algorithms for motif discovery are MEME, Gibbs Motif Sampler or CONSENSUS. More recently, motif discovery algorithms that make use of phylogenetic foot-printing (the idea that TF-binding site will be conserved in the promoter sequences for the same gene in different species) have become available. These are not usually applied to complement experimental work, but can be used to provide a starting point for it. Popular algorithms include FootPrinter and PhyloGibbs.
The principle of ChIP-chip is simple. The first step is to cross-link the protein-DNA complex. This is done using a fixating agent, such as formaldehyde. The cross-linking can later be reversed with heat. Cross-linking kills the cell, giving a snapshot of the bound TF at a given time. The cell is then lysed, the DNA sheared by sonication and the chromatin[2] (TF-DNA complexes) is pulled down using an antibody (i.e. immunoprecipitated). If an antibody for the TF is available, then it is used; otherwise, the TF is tagged with an epitope targeted by commercially available antibodies (the latter option is cheaper, but runs the risk of altering the TF's functionality). Cross-linking is then reversed to free the bound DNA, which is then amplified, labeled with a fluorophore and dumped onto a DNA-array. The scanned array reveals the genomic regions bound by the TF. The resolution is around ~500 bp as a result of the sonication step.
In motif discovery, we are given a set of sequences that we suspect harbor binding sites for a given transcription factor. A typical scenario is data coming from expression experiments, in which we wish to analyze the promoter region of a bunch of genes that are up- or down-regulated under some condition. The goal of motif discovery is to detect the transcription factor binding motif (i.e. the sequence “pattern” bound by the TF), by assuming that it will be overrepresented in our sample of sequences. There are different strategies to accomplish this, but the standard approach uses expectation maximization (EM) and in particular Gibbs sampling or greedy search. Popular algorithms for motif discovery are MEME, Gibbs Motif Sampler or CONSENSUS. More recently, motif discovery algorithms that make use of phylogenetic foot-printing (the idea that TF-binding site will be conserved in the promoter sequences for the same gene in different species) have become available. These are not usually applied to complement experimental work, but can be used to provide a starting point for it. Popular algorithms include FootPrinter and PhyloGibbs.
The principle of ChIP-chip is simple. The first step is to cross-link the protein-DNA complex. This is done using a fixating agent, such as formaldehyde. The cross-linking can later be reversed with heat. Cross-linking kills the cell, giving a snapshot of the bound TF at a given time. The cell is then lysed, the DNA sheared by sonication and the chromatin[2] (TF-DNA complexes) is pulled down using an antibody (i.e. immunoprecipitated). If an antibody for the TF is available, then it is used; otherwise, the TF is tagged with an epitope targeted by commercially available antibodies (the latter option is cheaper, but runs the risk of altering the TF's functionality). Cross-linking is then reversed to free the bound DNA, which is then amplified, labeled with a fluorophore and dumped onto a DNA-array. The scanned array reveals the genomic regions bound by the TF. The resolution is around ~500 bp as a result of the sonication step.
In motif discovery, we are given a set of sequences that we suspect harbor binding sites for a given transcription factor. A typical scenario is data coming from expression experiments, in which we wish to analyze the promoter region of a bunch of genes that are up- or down-regulated under some condition. The goal of motif discovery is to detect the transcription factor binding motif (i.e. the sequence “pattern” bound by the TF), by assuming that it will be overrepresented in our sample of sequences. There are different strategies to accomplish this, but the standard approach uses expectation maximization (EM) and in particular Gibbs sampling or greedy search. Popular algorithms for motif discovery are MEME, Gibbs Motif Sampler or CONSENSUS. More recently, motif discovery algorithms that make use of phylogenetic foot-printing (the idea that TF-binding site will be conserved in the promoter sequences for the same gene in different species) have become available. These are not usually applied to complement experimental work, but can be used to provide a starting point for it. Popular algorithms include FootPrinter and PhyloGibbs.
The principle of ChIP-chip is simple. The first step is to cross-link the protein-DNA complex. This is done using a fixating agent, such as formaldehyde. The cross-linking can later be reversed with heat. Cross-linking kills the cell, giving a snapshot of the bound TF at a given time. The cell is then lysed, the DNA sheared by sonication and the chromatin[2] (TF-DNA complexes) is pulled down using an antibody (i.e. immunoprecipitated). If an antibody for the TF is available, then it is used; otherwise, the TF is tagged with an epitope targeted by commercially available antibodies (the latter option is cheaper, but runs the risk of altering the TF's functionality). Cross-linking is then reversed to free the bound DNA, which is then amplified, labeled with a fluorophore and dumped onto a DNA-array. The scanned array reveals the genomic regions bound by the TF. The resolution is around ~500 bp as a result of the sonication step.
In motif discovery, we are given a set of sequences that we suspect harbor binding sites for a given transcription factor. A typical scenario is data coming from expression experiments, in which we wish to analyze the promoter region of a bunch of genes that are up- or down-regulated under some condition. The goal of motif discovery is to detect the transcription factor binding motif (i.e. the sequence “pattern” bound by the TF), by assuming that it will be overrepresented in our sample of sequences. There are different strategies to accomplish this, but the standard approach uses expectation maximization (EM) and in particular Gibbs sampling or greedy search. Popular algorithms for motif discovery are MEME, Gibbs Motif Sampler or CONSENSUS. More recently, motif discovery algorithms that make use of phylogenetic foot-printing (the idea that TF-binding site will be conserved in the promoter sequences for the same gene in different species) have become available. These are not usually applied to complement experimental work, but can be used to provide a starting point for it. Popular algorithms include FootPrinter and PhyloGibbs.
The principle of ChIP-chip is simple. The first step is to cross-link the protein-DNA complex. This is done using a fixating agent, such as formaldehyde. The cross-linking can later be reversed with heat. Cross-linking kills the cell, giving a snapshot of the bound TF at a given time. The cell is then lysed, the DNA sheared by sonication and the chromatin[2] (TF-DNA complexes) is pulled down using an antibody (i.e. immunoprecipitated). If an antibody for the TF is available, then it is used; otherwise, the TF is tagged with an epitope targeted by commercially available antibodies (the latter option is cheaper, but runs the risk of altering the TF's functionality). Cross-linking is then reversed to free the bound DNA, which is then amplified, labeled with a fluorophore and dumped onto a DNA-array. The scanned array reveals the genomic regions bound by the TF. The resolution is around ~500 bp as a result of the sonication step.
In motif discovery, we are given a set of sequences that we suspect harbor binding sites for a given transcription factor. A typical scenario is data coming from expression experiments, in which we wish to analyze the promoter region of a bunch of genes that are up- or down-regulated under some condition. The goal of motif discovery is to detect the transcription factor binding motif (i.e. the sequence “pattern” bound by the TF), by assuming that it will be overrepresented in our sample of sequences. There are different strategies to accomplish this, but the standard approach uses expectation maximization (EM) and in particular Gibbs sampling or greedy search. Popular algorithms for motif discovery are MEME, Gibbs Motif Sampler or CONSENSUS. More recently, motif discovery algorithms that make use of phylogenetic foot-printing (the idea that TF-binding site will be conserved in the promoter sequences for the same gene in different species) have become available. These are not usually applied to complement experimental work, but can be used to provide a starting point for it. Popular algorithms include FootPrinter and PhyloGibbs.
The principle of ChIP-chip is simple. The first step is to cross-link the protein-DNA complex. This is done using a fixating agent, such as formaldehyde. The cross-linking can later be reversed with heat. Cross-linking kills the cell, giving a snapshot of the bound TF at a given time. The cell is then lysed, the DNA sheared by sonication and the chromatin[2] (TF-DNA complexes) is pulled down using an antibody (i.e. immunoprecipitated). If an antibody for the TF is available, then it is used; otherwise, the TF is tagged with an epitope targeted by commercially available antibodies (the latter option is cheaper, but runs the risk of altering the TF's functionality). Cross-linking is then reversed to free the bound DNA, which is then amplified, labeled with a fluorophore and dumped onto a DNA-array. The scanned array reveals the genomic regions bound by the TF. The resolution is around ~500 bp as a result of the sonication step.
In motif discovery, we are given a set of sequences that we suspect harbor binding sites for a given transcription factor. A typical scenario is data coming from expression experiments, in which we wish to analyze the promoter region of a bunch of genes that are up- or down-regulated under some condition. The goal of motif discovery is to detect the transcription factor binding motif (i.e. the sequence “pattern” bound by the TF), by assuming that it will be overrepresented in our sample of sequences. There are different strategies to accomplish this, but the standard approach uses expectation maximization (EM) and in particular Gibbs sampling or greedy search. Popular algorithms for motif discovery are MEME, Gibbs Motif Sampler or CONSENSUS. More recently, motif discovery algorithms that make use of phylogenetic foot-printing (the idea that TF-binding site will be conserved in the promoter sequences for the same gene in different species) have become available. These are not usually applied to complement experimental work, but can be used to provide a starting point for it. Popular algorithms include FootPrinter and PhyloGibbs.
The principle of ChIP-chip is simple. The first step is to cross-link the protein-DNA complex. This is done using a fixating agent, such as formaldehyde. The cross-linking can later be reversed with heat. Cross-linking kills the cell, giving a snapshot of the bound TF at a given time. The cell is then lysed, the DNA sheared by sonication and the chromatin[2] (TF-DNA complexes) is pulled down using an antibody (i.e. immunoprecipitated). If an antibody for the TF is available, then it is used; otherwise, the TF is tagged with an epitope targeted by commercially available antibodies (the latter option is cheaper, but runs the risk of altering the TF's functionality). Cross-linking is then reversed to free the bound DNA, which is then amplified, labeled with a fluorophore and dumped onto a DNA-array. The scanned array reveals the genomic regions bound by the TF. The resolution is around ~500 bp as a result of the sonication step.
In motif discovery, we are given a set of sequences that we suspect harbor binding sites for a given transcription factor. A typical scenario is data coming from expression experiments, in which we wish to analyze the promoter region of a bunch of genes that are up- or down-regulated under some condition. The goal of motif discovery is to detect the transcription factor binding motif (i.e. the sequence “pattern” bound by the TF), by assuming that it will be overrepresented in our sample of sequences. There are different strategies to accomplish this, but the standard approach uses expectation maximization (EM) and in particular Gibbs sampling or greedy search. Popular algorithms for motif discovery are MEME, Gibbs Motif Sampler or CONSENSUS. More recently, motif discovery algorithms that make use of phylogenetic foot-printing (the idea that TF-binding site will be conserved in the promoter sequences for the same gene in different species) have become available. These are not usually applied to complement experimental work, but can be used to provide a starting point for it. Popular algorithms include FootPrinter and PhyloGibbs.
The principle of ChIP-chip is simple. The first step is to cross-link the protein-DNA complex. This is done using a fixating agent, such as formaldehyde. The cross-linking can later be reversed with heat. Cross-linking kills the cell, giving a snapshot of the bound TF at a given time. The cell is then lysed, the DNA sheared by sonication and the chromatin[2] (TF-DNA complexes) is pulled down using an antibody (i.e. immunoprecipitated). If an antibody for the TF is available, then it is used; otherwise, the TF is tagged with an epitope targeted by commercially available antibodies (the latter option is cheaper, but runs the risk of altering the TF's functionality). Cross-linking is then reversed to free the bound DNA, which is then amplified, labeled with a fluorophore and dumped onto a DNA-array. The scanned array reveals the genomic regions bound by the TF. The resolution is around ~500 bp as a result of the sonication step.
In motif discovery, we are given a set of sequences that we suspect harbor binding sites for a given transcription factor. A typical scenario is data coming from expression experiments, in which we wish to analyze the promoter region of a bunch of genes that are up- or down-regulated under some condition. The goal of motif discovery is to detect the transcription factor binding motif (i.e. the sequence “pattern” bound by the TF), by assuming that it will be overrepresented in our sample of sequences. There are different strategies to accomplish this, but the standard approach uses expectation maximization (EM) and in particular Gibbs sampling or greedy search. Popular algorithms for motif discovery are MEME, Gibbs Motif Sampler or CONSENSUS. More recently, motif discovery algorithms that make use of phylogenetic foot-printing (the idea that TF-binding site will be conserved in the promoter sequences for the same gene in different species) have become available. These are not usually applied to complement experimental work, but can be used to provide a starting point for it. Popular algorithms include FootPrinter and PhyloGibbs.
The principle of ChIP-chip is simple. The first step is to cross-link the protein-DNA complex. This is done using a fixating agent, such as formaldehyde. The cross-linking can later be reversed with heat. Cross-linking kills the cell, giving a snapshot of the bound TF at a given time. The cell is then lysed, the DNA sheared by sonication and the chromatin[2] (TF-DNA complexes) is pulled down using an antibody (i.e. immunoprecipitated). If an antibody for the TF is available, then it is used; otherwise, the TF is tagged with an epitope targeted by commercially available antibodies (the latter option is cheaper, but runs the risk of altering the TF's functionality). Cross-linking is then reversed to free the bound DNA, which is then amplified, labeled with a fluorophore and dumped onto a DNA-array. The scanned array reveals the genomic regions bound by the TF. The resolution is around ~500 bp as a result of the sonication step.
In motif discovery, we are given a set of sequences that we suspect harbor binding sites for a given transcription factor. A typical scenario is data coming from expression experiments, in which we wish to analyze the promoter region of a bunch of genes that are up- or down-regulated under some condition. The goal of motif discovery is to detect the transcription factor binding motif (i.e. the sequence “pattern” bound by the TF), by assuming that it will be overrepresented in our sample of sequences. There are different strategies to accomplish this, but the standard approach uses expectation maximization (EM) and in particular Gibbs sampling or greedy search. Popular algorithms for motif discovery are MEME, Gibbs Motif Sampler or CONSENSUS. More recently, motif discovery algorithms that make use of phylogenetic foot-printing (the idea that TF-binding site will be conserved in the promoter sequences for the same gene in different species) have become available. These are not usually applied to complement experimental work, but can be used to provide a starting point for it. Popular algorithms include FootPrinter and PhyloGibbs.
The principle of ChIP-chip is simple. The first step is to cross-link the protein-DNA complex. This is done using a fixating agent, such as formaldehyde. The cross-linking can later be reversed with heat. Cross-linking kills the cell, giving a snapshot of the bound TF at a given time. The cell is then lysed, the DNA sheared by sonication and the chromatin[2] (TF-DNA complexes) is pulled down using an antibody (i.e. immunoprecipitated). If an antibody for the TF is available, then it is used; otherwise, the TF is tagged with an epitope targeted by commercially available antibodies (the latter option is cheaper, but runs the risk of altering the TF's functionality). Cross-linking is then reversed to free the bound DNA, which is then amplified, labeled with a fluorophore and dumped onto a DNA-array. The scanned array reveals the genomic regions bound by the TF. The resolution is around ~500 bp as a result of the sonication step.
In motif discovery, we are given a set of sequences that we suspect harbor binding sites for a given transcription factor. A typical scenario is data coming from expression experiments, in which we wish to analyze the promoter region of a bunch of genes that are up- or down-regulated under some condition. The goal of motif discovery is to detect the transcription factor binding motif (i.e. the sequence “pattern” bound by the TF), by assuming that it will be overrepresented in our sample of sequences. There are different strategies to accomplish this, but the standard approach uses expectation maximization (EM) and in particular Gibbs sampling or greedy search. Popular algorithms for motif discovery are MEME, Gibbs Motif Sampler or CONSENSUS. More recently, motif discovery algorithms that make use of phylogenetic foot-printing (the idea that TF-binding site will be conserved in the promoter sequences for the same gene in different species) have become available. These are not usually applied to complement experimental work, but can be used to provide a starting point for it. Popular algorithms include FootPrinter and PhyloGibbs.
The principle of ChIP-chip is simple. The first step is to cross-link the protein-DNA complex. This is done using a fixating agent, such as formaldehyde. The cross-linking can later be reversed with heat. Cross-linking kills the cell, giving a snapshot of the bound TF at a given time. The cell is then lysed, the DNA sheared by sonication and the chromatin[2] (TF-DNA complexes) is pulled down using an antibody (i.e. immunoprecipitated). If an antibody for the TF is available, then it is used; otherwise, the TF is tagged with an epitope targeted by commercially available antibodies (the latter option is cheaper, but runs the risk of altering the TF's functionality). Cross-linking is then reversed to free the bound DNA, which is then amplified, labeled with a fluorophore and dumped onto a DNA-array. The scanned array reveals the genomic regions bound by the TF. The resolution is around ~500 bp as a result of the sonication step.
In motif discovery, we are given a set of sequences that we suspect harbor binding sites for a given transcription factor. A typical scenario is data coming from expression experiments, in which we wish to analyze the promoter region of a bunch of genes that are up- or down-regulated under some condition. The goal of motif discovery is to detect the transcription factor binding motif (i.e. the sequence “pattern” bound by the TF), by assuming that it will be overrepresented in our sample of sequences. There are different strategies to accomplish this, but the standard approach uses expectation maximization (EM) and in particular Gibbs sampling or greedy search. Popular algorithms for motif discovery are MEME, Gibbs Motif Sampler or CONSENSUS. More recently, motif discovery algorithms that make use of phylogenetic foot-printing (the idea that TF-binding site will be conserved in the promoter sequences for the same gene in different species) have become available. These are not usually applied to complement experimental work, but can be used to provide a starting point for it. Popular algorithms include FootPrinter and PhyloGibbs.
The principle of ChIP-chip is simple. The first step is to cross-link the protein-DNA complex. This is done using a fixating agent, such as formaldehyde. The cross-linking can later be reversed with heat. Cross-linking kills the cell, giving a snapshot of the bound TF at a given time. The cell is then lysed, the DNA sheared by sonication and the chromatin[2] (TF-DNA complexes) is pulled down using an antibody (i.e. immunoprecipitated). If an antibody for the TF is available, then it is used; otherwise, the TF is tagged with an epitope targeted by commercially available antibodies (the latter option is cheaper, but runs the risk of altering the TF's functionality). Cross-linking is then reversed to free the bound DNA, which is then amplified, labeled with a fluorophore and dumped onto a DNA-array. The scanned array reveals the genomic regions bound by the TF. The resolution is around ~500 bp as a result of the sonication step.
In motif discovery, we are given a set of sequences that we suspect harbor binding sites for a given transcription factor. A typical scenario is data coming from expression experiments, in which we wish to analyze the promoter region of a bunch of genes that are up- or down-regulated under some condition. The goal of motif discovery is to detect the transcription factor binding motif (i.e. the sequence “pattern” bound by the TF), by assuming that it will be overrepresented in our sample of sequences. There are different strategies to accomplish this, but the standard approach uses expectation maximization (EM) and in particular Gibbs sampling or greedy search. Popular algorithms for motif discovery are MEME, Gibbs Motif Sampler or CONSENSUS. More recently, motif discovery algorithms that make use of phylogenetic foot-printing (the idea that TF-binding site will be conserved in the promoter sequences for the same gene in different species) have become available. These are not usually applied to complement experimental work, but can be used to provide a starting point for it. Popular algorithms include FootPrinter and PhyloGibbs.
The principle of ChIP-chip is simple. The first step is to cross-link the protein-DNA complex. This is done using a fixating agent, such as formaldehyde. The cross-linking can later be reversed with heat. Cross-linking kills the cell, giving a snapshot of the bound TF at a given time. The cell is then lysed, the DNA sheared by sonication and the chromatin[2] (TF-DNA complexes) is pulled down using an antibody (i.e. immunoprecipitated). If an antibody for the TF is available, then it is used; otherwise, the TF is tagged with an epitope targeted by commercially available antibodies (the latter option is cheaper, but runs the risk of altering the TF's functionality). Cross-linking is then reversed to free the bound DNA, which is then amplified, labeled with a fluorophore and dumped onto a DNA-array. The scanned array reveals the genomic regions bound by the TF. The resolution is around ~500 bp as a result of the sonication step.
In motif discovery, we are given a set of sequences that we suspect harbor binding sites for a given transcription factor. A typical scenario is data coming from expression experiments, in which we wish to analyze the promoter region of a bunch of genes that are up- or down-regulated under some condition. The goal of motif discovery is to detect the transcription factor binding motif (i.e. the sequence “pattern” bound by the TF), by assuming that it will be overrepresented in our sample of sequences. There are different strategies to accomplish this, but the standard approach uses expectation maximization (EM) and in particular Gibbs sampling or greedy search. Popular algorithms for motif discovery are MEME, Gibbs Motif Sampler or CONSENSUS. More recently, motif discovery algorithms that make use of phylogenetic foot-printing (the idea that TF-binding site will be conserved in the promoter sequences for the same gene in different species) have become available. These are not usually applied to complement experimental work, but can be used to provide a starting point for it. Popular algorithms include FootPrinter and PhyloGibbs.
The principle of ChIP-chip is simple. The first step is to cross-link the protein-DNA complex. This is done using a fixating agent, such as formaldehyde. The cross-linking can later be reversed with heat. Cross-linking kills the cell, giving a snapshot of the bound TF at a given time. The cell is then lysed, the DNA sheared by sonication and the chromatin[2] (TF-DNA complexes) is pulled down using an antibody (i.e. immunoprecipitated). If an antibody for the TF is available, then it is used; otherwise, the TF is tagged with an epitope targeted by commercially available antibodies (the latter option is cheaper, but runs the risk of altering the TF's functionality). Cross-linking is then reversed to free the bound DNA, which is then amplified, labeled with a fluorophore and dumped onto a DNA-array. The scanned array reveals the genomic regions bound by the TF. The resolution is around ~500 bp as a result of the sonication step.
In motif discovery, we are given a set of sequences that we suspect harbor binding sites for a given transcription factor. A typical scenario is data coming from expression experiments, in which we wish to analyze the promoter region of a bunch of genes that are up- or down-regulated under some condition. The goal of motif discovery is to detect the transcription factor binding motif (i.e. the sequence “pattern” bound by the TF), by assuming that it will be overrepresented in our sample of sequences. There are different strategies to accomplish this, but the standard approach uses expectation maximization (EM) and in particular Gibbs sampling or greedy search. Popular algorithms for motif discovery are MEME, Gibbs Motif Sampler or CONSENSUS. More recently, motif discovery algorithms that make use of phylogenetic foot-printing (the idea that TF-binding site will be conserved in the promoter sequences for the same gene in different species) have become available. These are not usually applied to complement experimental work, but can be used to provide a starting point for it. Popular algorithms include FootPrinter and PhyloGibbs.
The principle of ChIP-chip is simple. The first step is to cross-link the protein-DNA complex. This is done using a fixating agent, such as formaldehyde. The cross-linking can later be reversed with heat. Cross-linking kills the cell, giving a snapshot of the bound TF at a given time. The cell is then lysed, the DNA sheared by sonication and the chromatin[2] (TF-DNA complexes) is pulled down using an antibody (i.e. immunoprecipitated). If an antibody for the TF is available, then it is used; otherwise, the TF is tagged with an epitope targeted by commercially available antibodies (the latter option is cheaper, but runs the risk of altering the TF's functionality). Cross-linking is then reversed to free the bound DNA, which is then amplified, labeled with a fluorophore and dumped onto a DNA-array. The scanned array reveals the genomic regions bound by the TF. The resolution is around ~500 bp as a result of the sonication step.
In motif discovery, we are given a set of sequences that we suspect harbor binding sites for a given transcription factor. A typical scenario is data coming from expression experiments, in which we wish to analyze the promoter region of a bunch of genes that are up- or down-regulated under some condition. The goal of motif discovery is to detect the transcription factor binding motif (i.e. the sequence “pattern” bound by the TF), by assuming that it will be overrepresented in our sample of sequences. There are different strategies to accomplish this, but the standard approach uses expectation maximization (EM) and in particular Gibbs sampling or greedy search. Popular algorithms for motif discovery are MEME, Gibbs Motif Sampler or CONSENSUS. More recently, motif discovery algorithms that make use of phylogenetic foot-printing (the idea that TF-binding site will be conserved in the promoter sequences for the same gene in different species) have become available. These are not usually applied to complement experimental work, but can be used to provide a starting point for it. Popular algorithms include FootPrinter and PhyloGibbs.
The principle of ChIP-chip is simple. The first step is to cross-link the protein-DNA complex. This is done using a fixating agent, such as formaldehyde. The cross-linking can later be reversed with heat. Cross-linking kills the cell, giving a snapshot of the bound TF at a given time. The cell is then lysed, the DNA sheared by sonication and the chromatin[2] (TF-DNA complexes) is pulled down using an antibody (i.e. immunoprecipitated). If an antibody for the TF is available, then it is used; otherwise, the TF is tagged with an epitope targeted by commercially available antibodies (the latter option is cheaper, but runs the risk of altering the TF's functionality). Cross-linking is then reversed to free the bound DNA, which is then amplified, labeled with a fluorophore and dumped onto a DNA-array. The scanned array reveals the genomic regions bound by the TF. The resolution is around ~500 bp as a result of the sonication step.
In motif discovery, we are given a set of sequences that we suspect harbor binding sites for a given transcription factor. A typical scenario is data coming from expression experiments, in which we wish to analyze the promoter region of a bunch of genes that are up- or down-regulated under some condition. The goal of motif discovery is to detect the transcription factor binding motif (i.e. the sequence “pattern” bound by the TF), by assuming that it will be overrepresented in our sample of sequences. There are different strategies to accomplish this, but the standard approach uses expectation maximization (EM) and in particular Gibbs sampling or greedy search. Popular algorithms for motif discovery are MEME, Gibbs Motif Sampler or CONSENSUS. More recently, motif discovery algorithms that make use of phylogenetic foot-printing (the idea that TF-binding site will be conserved in the promoter sequences for the same gene in different species) have become available. These are not usually applied to complement experimental work, but can be used to provide a starting point for it. Popular algorithms include FootPrinter and PhyloGibbs.
The principle of ChIP-chip is simple. The first step is to cross-link the protein-DNA complex. This is done using a fixating agent, such as formaldehyde. The cross-linking can later be reversed with heat. Cross-linking kills the cell, giving a snapshot of the bound TF at a given time. The cell is then lysed, the DNA sheared by sonication and the chromatin[2] (TF-DNA complexes) is pulled down using an antibody (i.e. immunoprecipitated). If an antibody for the TF is available, then it is used; otherwise, the TF is tagged with an epitope targeted by commercially available antibodies (the latter option is cheaper, but runs the risk of altering the TF's functionality). Cross-linking is then reversed to free the bound DNA, which is then amplified, labeled with a fluorophore and dumped onto a DNA-array. The scanned array reveals the genomic regions bound by the TF. The resolution is around ~500 bp as a result of the sonication step.
In motif discovery, we are given a set of sequences that we suspect harbor binding sites for a given transcription factor. A typical scenario is data coming from expression experiments, in which we wish to analyze the promoter region of a bunch of genes that are up- or down-regulated under some condition. The goal of motif discovery is to detect the transcription factor binding motif (i.e. the sequence “pattern” bound by the TF), by assuming that it will be overrepresented in our sample of sequences. There are different strategies to accomplish this, but the standard approach uses expectation maximization (EM) and in particular Gibbs sampling or greedy search. Popular algorithms for motif discovery are MEME, Gibbs Motif Sampler or CONSENSUS. More recently, motif discovery algorithms that make use of phylogenetic foot-printing (the idea that TF-binding site will be conserved in the promoter sequences for the same gene in different species) have become available. These are not usually applied to complement experimental work, but can be used to provide a starting point for it. Popular algorithms include FootPrinter and PhyloGibbs.
The principle of ChIP-chip is simple. The first step is to cross-link the protein-DNA complex. This is done using a fixating agent, such as formaldehyde. The cross-linking can later be reversed with heat. Cross-linking kills the cell, giving a snapshot of the bound TF at a given time. The cell is then lysed, the DNA sheared by sonication and the chromatin[2] (TF-DNA complexes) is pulled down using an antibody (i.e. immunoprecipitated). If an antibody for the TF is available, then it is used; otherwise, the TF is tagged with an epitope targeted by commercially available antibodies (the latter option is cheaper, but runs the risk of altering the TF's functionality). Cross-linking is then reversed to free the bound DNA, which is then amplified, labeled with a fluorophore and dumped onto a DNA-array. The scanned array reveals the genomic regions bound by the TF. The resolution is around ~500 bp as a result of the sonication step.
In motif discovery, we are given a set of sequences that we suspect harbor binding sites for a given transcription factor. A typical scenario is data coming from expression experiments, in which we wish to analyze the promoter region of a bunch of genes that are up- or down-regulated under some condition. The goal of motif discovery is to detect the transcription factor binding motif (i.e. the sequence “pattern” bound by the TF), by assuming that it will be overrepresented in our sample of sequences. There are different strategies to accomplish this, but the standard approach uses expectation maximization (EM) and in particular Gibbs sampling or greedy search. Popular algorithms for motif discovery are MEME, Gibbs Motif Sampler or CONSENSUS. More recently, motif discovery algorithms that make use of phylogenetic foot-printing (the idea that TF-binding site will be conserved in the promoter sequences for the same gene in different species) have become available. These are not usually applied to complement experimental work, but can be used to provide a starting point for it. Popular algorithms include FootPrinter and PhyloGibbs.
The principle of ChIP-chip is simple. The first step is to cross-link the protein-DNA complex. This is done using a fixating agent, such as formaldehyde. The cross-linking can later be reversed with heat. Cross-linking kills the cell, giving a snapshot of the bound TF at a given time. The cell is then lysed, the DNA sheared by sonication and the chromatin[2] (TF-DNA complexes) is pulled down using an antibody (i.e. immunoprecipitated). If an antibody for the TF is available, then it is used; otherwise, the TF is tagged with an epitope targeted by commercially available antibodies (the latter option is cheaper, but runs the risk of altering the TF's functionality). Cross-linking is then reversed to free the bound DNA, which is then amplified, labeled with a fluorophore and dumped onto a DNA-array. The scanned array reveals the genomic regions bound by the TF. The resolution is around ~500 bp as a result of the sonication step.
In motif discovery, we are given a set of sequences that we suspect harbor binding sites for a given transcription factor. A typical scenario is data coming from expression experiments, in which we wish to analyze the promoter region of a bunch of genes that are up- or down-regulated under some condition. The goal of motif discovery is to detect the transcription factor binding motif (i.e. the sequence “pattern” bound by the TF), by assuming that it will be overrepresented in our sample of sequences. There are different strategies to accomplish this, but the standard approach uses expectation maximization (EM) and in particular Gibbs sampling or greedy search. Popular algorithms for motif discovery are MEME, Gibbs Motif Sampler or CONSENSUS. More recently, motif discovery algorithms that make use of phylogenetic foot-printing (the idea that TF-binding site will be conserved in the promoter sequences for the same gene in different species) have become available. These are not usually applied to complement experimental work, but can be used to provide a starting point for it. Popular algorithms include FootPrinter and PhyloGibbs.
The principle of ChIP-chip is simple. The first step is to cross-link the protein-DNA complex. This is done using a fixating agent, such as formaldehyde. The cross-linking can later be reversed with heat. Cross-linking kills the cell, giving a snapshot of the bound TF at a given time. The cell is then lysed, the DNA sheared by sonication and the chromatin[2] (TF-DNA complexes) is pulled down using an antibody (i.e. immunoprecipitated). If an antibody for the TF is available, then it is used; otherwise, the TF is tagged with an epitope targeted by commercially available antibodies (the latter option is cheaper, but runs the risk of altering the TF's functionality). Cross-linking is then reversed to free the bound DNA, which is then amplified, labeled with a fluorophore and dumped onto a DNA-array. The scanned array reveals the genomic regions bound by the TF. The resolution is around ~500 bp as a result of the sonication step.
In motif discovery, we are given a set of sequences that we suspect harbor binding sites for a given transcription factor. A typical scenario is data coming from expression experiments, in which we wish to analyze the promoter region of a bunch of genes that are up- or down-regulated under some condition. The goal of motif discovery is to detect the transcription factor binding motif (i.e. the sequence “pattern” bound by the TF), by assuming that it will be overrepresented in our sample of sequences. There are different strategies to accomplish this, but the standard approach uses expectation maximization (EM) and in particular Gibbs sampling or greedy search. Popular algorithms for motif discovery are MEME, Gibbs Motif Sampler or CONSENSUS. More recently, motif discovery algorithms that make use of phylogenetic foot-printing (the idea that TF-binding site will be conserved in the promoter sequences for the same gene in different species) have become available. These are not usually applied to complement experimental work, but can be used to provide a starting point for it. Popular algorithms include FootPrinter and PhyloGibbs.
The principle of ChIP-chip is simple. The first step is to cross-link the protein-DNA complex. This is done using a fixating agent, such as formaldehyde. The cross-linking can later be reversed with heat. Cross-linking kills the cell, giving a snapshot of the bound TF at a given time. The cell is then lysed, the DNA sheared by sonication and the chromatin[2] (TF-DNA complexes) is pulled down using an antibody (i.e. immunoprecipitated). If an antibody for the TF is available, then it is used; otherwise, the TF is tagged with an epitope targeted by commercially available antibodies (the latter option is cheaper, but runs the risk of altering the TF's functionality). Cross-linking is then reversed to free the bound DNA, which is then amplified, labeled with a fluorophore and dumped onto a DNA-array. The scanned array reveals the genomic regions bound by the TF. The resolution is around ~500 bp as a result of the sonication step.
In motif discovery, we are given a set of sequences that we suspect harbor binding sites for a given transcription factor. A typical scenario is data coming from expression experiments, in which we wish to analyze the promoter region of a bunch of genes that are up- or down-regulated under some condition. The goal of motif discovery is to detect the transcription factor binding motif (i.e. the sequence “pattern” bound by the TF), by assuming that it will be overrepresented in our sample of sequences. There are different strategies to accomplish this, but the standard approach uses expectation maximization (EM) and in particular Gibbs sampling or greedy search. Popular algorithms for motif discovery are MEME, Gibbs Motif Sampler or CONSENSUS. More recently, motif discovery algorithms that make use of phylogenetic foot-printing (the idea that TF-binding site will be conserved in the promoter sequences for the same gene in different species) have become available. These are not usually applied to complement experimental work, but can be used to provide a starting point for it. Popular algorithms include FootPrinter and PhyloGibbs.
The principle of ChIP-chip is simple. The first step is to cross-link the protein-DNA complex. This is done using a fixating agent, such as formaldehyde. The cross-linking can later be reversed with heat. Cross-linking kills the cell, giving a snapshot of the bound TF at a given time. The cell is then lysed, the DNA sheared by sonication and the chromatin[2] (TF-DNA complexes) is pulled down using an antibody (i.e. immunoprecipitated). If an antibody for the TF is available, then it is used; otherwise, the TF is tagged with an epitope targeted by commercially available antibodies (the latter option is cheaper, but runs the risk of altering the TF's functionality). Cross-linking is then reversed to free the bound DNA, which is then amplified, labeled with a fluorophore and dumped onto a DNA-array. The scanned array reveals the genomic regions bound by the TF. The resolution is around ~500 bp as a result of the sonication step.
In motif discovery, we are given a set of sequences that we suspect harbor binding sites for a given transcription factor. A typical scenario is data coming from expression experiments, in which we wish to analyze the promoter region of a bunch of genes that are up- or down-regulated under some condition. The goal of motif discovery is to detect the transcription factor binding motif (i.e. the sequence “pattern” bound by the TF), by assuming that it will be overrepresented in our sample of sequences. There are different strategies to accomplish this, but the standard approach uses expectation maximization (EM) and in particular Gibbs sampling or greedy search. Popular algorithms for motif discovery are MEME, Gibbs Motif Sampler or CONSENSUS. More recently, motif discovery algorithms that make use of phylogenetic foot-printing (the idea that TF-binding site will be conserved in the promoter sequences for the same gene in different species) have become available. These are not usually applied to complement experimental work, but can be used to provide a starting point for it. Popular algorithms include FootPrinter and PhyloGibbs.
The principle of ChIP-chip is simple. The first step is to cross-link the protein-DNA complex. This is done using a fixating agent, such as formaldehyde. The cross-linking can later be reversed with heat. Cross-linking kills the cell, giving a snapshot of the bound TF at a given time. The cell is then lysed, the DNA sheared by sonication and the chromatin[2] (TF-DNA complexes) is pulled down using an antibody (i.e. immunoprecipitated). If an antibody for the TF is available, then it is used; otherwise, the TF is tagged with an epitope targeted by commercially available antibodies (the latter option is cheaper, but runs the risk of altering the TF's functionality). Cross-linking is then reversed to free the bound DNA, which is then amplified, labeled with a fluorophore and dumped onto a DNA-array. The scanned array reveals the genomic regions bound by the TF. The resolution is around ~500 bp as a result of the sonication step.
In motif discovery, we are given a set of sequences that we suspect harbor binding sites for a given transcription factor. A typical scenario is data coming from expression experiments, in which we wish to analyze the promoter region of a bunch of genes that are up- or down-regulated under some condition. The goal of motif discovery is to detect the transcription factor binding motif (i.e. the sequence “pattern” bound by the TF), by assuming that it will be overrepresented in our sample of sequences. There are different strategies to accomplish this, but the standard approach uses expectation maximization (EM) and in particular Gibbs sampling or greedy search. Popular algorithms for motif discovery are MEME, Gibbs Motif Sampler or CONSENSUS. More recently, motif discovery algorithms that make use of phylogenetic foot-printing (the idea that TF-binding site will be conserved in the promoter sequences for the same gene in different species) have become available. These are not usually applied to complement experimental work, but can be used to provide a starting point for it. Popular algorithms include FootPrinter and PhyloGibbs.
The principle of ChIP-chip is simple. The first step is to cross-link the protein-DNA complex. This is done using a fixating agent, such as formaldehyde. The cross-linking can later be reversed with heat. Cross-linking kills the cell, giving a snapshot of the bound TF at a given time. The cell is then lysed, the DNA sheared by sonication and the chromatin[2] (TF-DNA complexes) is pulled down using an antibody (i.e. immunoprecipitated). If an antibody for the TF is available, then it is used; otherwise, the TF is tagged with an epitope targeted by commercially available antibodies (the latter option is cheaper, but runs the risk of altering the TF's functionality). Cross-linking is then reversed to free the bound DNA, which is then amplified, labeled with a fluorophore and dumped onto a DNA-array. The scanned array reveals the genomic regions bound by the TF. The resolution is around ~500 bp as a result of the sonication step.
In motif discovery, we are given a set of sequences that we suspect harbor binding sites for a given transcription factor. A typical scenario is data coming from expression experiments, in which we wish to analyze the promoter region of a bunch of genes that are up- or down-regulated under some condition. The goal of motif discovery is to detect the transcription factor binding motif (i.e. the sequence “pattern” bound by the TF), by assuming that it will be overrepresented in our sample of sequences. There are different strategies to accomplish this, but the standard approach uses expectation maximization (EM) and in particular Gibbs sampling or greedy search. Popular algorithms for motif discovery are MEME, Gibbs Motif Sampler or CONSENSUS. More recently, motif discovery algorithms that make use of phylogenetic foot-printing (the idea that TF-binding site will be conserved in the promoter sequences for the same gene in different species) have become available. These are not usually applied to complement experimental work, but can be used to provide a starting point for it. Popular algorithms include FootPrinter and PhyloGibbs.
The principle of ChIP-chip is simple. The first step is to cross-link the protein-DNA complex. This is done using a fixating agent, such as formaldehyde. The cross-linking can later be reversed with heat. Cross-linking kills the cell, giving a snapshot of the bound TF at a given time. The cell is then lysed, the DNA sheared by sonication and the chromatin[2] (TF-DNA complexes) is pulled down using an antibody (i.e. immunoprecipitated). If an antibody for the TF is available, then it is used; otherwise, the TF is tagged with an epitope targeted by commercially available antibodies (the latter option is cheaper, but runs the risk of altering the TF's functionality). Cross-linking is then reversed to free the bound DNA, which is then amplified, labeled with a fluorophore and dumped onto a DNA-array. The scanned array reveals the genomic regions bound by the TF. The resolution is around ~500 bp as a result of the sonication step.
In motif discovery, we are given a set of sequences that we suspect harbor binding sites for a given transcription factor. A typical scenario is data coming from expression experiments, in which we wish to analyze the promoter region of a bunch of genes that are up- or down-regulated under some condition. The goal of motif discovery is to detect the transcription factor binding motif (i.e. the sequence “pattern” bound by the TF), by assuming that it will be overrepresented in our sample of sequences. There are different strategies to accomplish this, but the standard approach uses expectation maximization (EM) and in particular Gibbs sampling or greedy search. Popular algorithms for motif discovery are MEME, Gibbs Motif Sampler or CONSENSUS. More recently, motif discovery algorithms that make use of phylogenetic foot-printing (the idea that TF-binding site will be conserved in the promoter sequences for the same gene in different species) have become available. These are not usually applied to complement experimental work, but can be used to provide a starting point for it. Popular algorithms include FootPrinter and PhyloGibbs.
The principle of ChIP-chip is simple. The first step is to cross-link the protein-DNA complex. This is done using a fixating agent, such as formaldehyde. The cross-linking can later be reversed with heat. Cross-linking kills the cell, giving a snapshot of the bound TF at a given time. The cell is then lysed, the DNA sheared by sonication and the chromatin[2] (TF-DNA complexes) is pulled down using an antibody (i.e. immunoprecipitated). If an antibody for the TF is available, then it is used; otherwise, the TF is tagged with an epitope targeted by commercially available antibodies (the latter option is cheaper, but runs the risk of altering the TF's functionality). Cross-linking is then reversed to free the bound DNA, which is then amplified, labeled with a fluorophore and dumped onto a DNA-array. The scanned array reveals the genomic regions bound by the TF. The resolution is around ~500 bp as a result of the sonication step.
In motif discovery, we are given a set of sequences that we suspect harbor binding sites for a given transcription factor. A typical scenario is data coming from expression experiments, in which we wish to analyze the promoter region of a bunch of genes that are up- or down-regulated under some condition. The goal of motif discovery is to detect the transcription factor binding motif (i.e. the sequence “pattern” bound by the TF), by assuming that it will be overrepresented in our sample of sequences. There are different strategies to accomplish this, but the standard approach uses expectation maximization (EM) and in particular Gibbs sampling or greedy search. Popular algorithms for motif discovery are MEME, Gibbs Motif Sampler or CONSENSUS. More recently, motif discovery algorithms that make use of phylogenetic foot-printing (the idea that TF-binding site will be conserved in the promoter sequences for the same gene in different species) have become available. These are not usually applied to complement experimental work, but can be used to provide a starting point for it. Popular algorithms include FootPrinter and PhyloGibbs.
The principle of ChIP-chip is simple. The first step is to cross-link the protein-DNA complex. This is done using a fixating agent, such as formaldehyde. The cross-linking can later be reversed with heat. Cross-linking kills the cell, giving a snapshot of the bound TF at a given time. The cell is then lysed, the DNA sheared by sonication and the chromatin[2] (TF-DNA complexes) is pulled down using an antibody (i.e. immunoprecipitated). If an antibody for the TF is available, then it is used; otherwise, the TF is tagged with an epitope targeted by commercially available antibodies (the latter option is cheaper, but runs the risk of altering the TF's functionality). Cross-linking is then reversed to free the bound DNA, which is then amplified, labeled with a fluorophore and dumped onto a DNA-array. The scanned array reveals the genomic regions bound by the TF. The resolution is around ~500 bp as a result of the sonication step.
In motif discovery, we are given a set of sequences that we suspect harbor binding sites for a given transcription factor. A typical scenario is data coming from expression experiments, in which we wish to analyze the promoter region of a bunch of genes that are up- or down-regulated under some condition. The goal of motif discovery is to detect the transcription factor binding motif (i.e. the sequence “pattern” bound by the TF), by assuming that it will be overrepresented in our sample of sequences. There are different strategies to accomplish this, but the standard approach uses expectation maximization (EM) and in particular Gibbs sampling or greedy search. Popular algorithms for motif discovery are MEME, Gibbs Motif Sampler or CONSENSUS. More recently, motif discovery algorithms that make use of phylogenetic foot-printing (the idea that TF-binding site will be conserved in the promoter sequences for the same gene in different species) have become available. These are not usually applied to complement experimental work, but can be used to provide a starting point for it. Popular algorithms include FootPrinter and PhyloGibbs.
The principle of ChIP-chip is simple. The first step is to cross-link the protein-DNA complex. This is done using a fixating agent, such as formaldehyde. The cross-linking can later be reversed with heat. Cross-linking kills the cell, giving a snapshot of the bound TF at a given time. The cell is then lysed, the DNA sheared by sonication and the chromatin[2] (TF-DNA complexes) is pulled down using an antibody (i.e. immunoprecipitated). If an antibody for the TF is available, then it is used; otherwise, the TF is tagged with an epitope targeted by commercially available antibodies (the latter option is cheaper, but runs the risk of altering the TF's functionality). Cross-linking is then reversed to free the bound DNA, which is then amplified, labeled with a fluorophore and dumped onto a DNA-array. The scanned array reveals the genomic regions bound by the TF. The resolution is around ~500 bp as a result of the sonication step.
In motif discovery, we are given a set of sequences that we suspect harbor binding sites for a given transcription factor. A typical scenario is data coming from expression experiments, in which we wish to analyze the promoter region of a bunch of genes that are up- or down-regulated under some condition. The goal of motif discovery is to detect the transcription factor binding motif (i.e. the sequence “pattern” bound by the TF), by assuming that it will be overrepresented in our sample of sequences. There are different strategies to accomplish this, but the standard approach uses expectation maximization (EM) and in particular Gibbs sampling or greedy search. Popular algorithms for motif discovery are MEME, Gibbs Motif Sampler or CONSENSUS. More recently, motif discovery algorithms that make use of phylogenetic foot-printing (the idea that TF-binding site will be conserved in the promoter sequences for the same gene in different species) have become available. These are not usually applied to complement experimental work, but can be used to provide a starting point for it. Popular algorithms include FootPrinter and PhyloGibbs.
The principle of ChIP-chip is simple. The first step is to cross-link the protein-DNA complex. This is done using a fixating agent, such as formaldehyde. The cross-linking can later be reversed with heat. Cross-linking kills the cell, giving a snapshot of the bound TF at a given time. The cell is then lysed, the DNA sheared by sonication and the chromatin[2] (TF-DNA complexes) is pulled down using an antibody (i.e. immunoprecipitated). If an antibody for the TF is available, then it is used; otherwise, the TF is tagged with an epitope targeted by commercially available antibodies (the latter option is cheaper, but runs the risk of altering the TF's functionality). Cross-linking is then reversed to free the bound DNA, which is then amplified, labeled with a fluorophore and dumped onto a DNA-array. The scanned array reveals the genomic regions bound by the TF. The resolution is around ~500 bp as a result of the sonication step.
In motif discovery, we are given a set of sequences that we suspect harbor binding sites for a given transcription factor. A typical scenario is data coming from expression experiments, in which we wish to analyze the promoter region of a bunch of genes that are up- or down-regulated under some condition. The goal of motif discovery is to detect the transcription factor binding motif (i.e. the sequence “pattern” bound by the TF), by assuming that it will be overrepresented in our sample of sequences. There are different strategies to accomplish this, but the standard approach uses expectation maximization (EM) and in particular Gibbs sampling or greedy search. Popular algorithms for motif discovery are MEME, Gibbs Motif Sampler or CONSENSUS. More recently, motif discovery algorithms that make use of phylogenetic foot-printing (the idea that TF-binding site will be conserved in the promoter sequences for the same gene in different species) have become available. These are not usually applied to complement experimental work, but can be used to provide a starting point for it. Popular algorithms include FootPrinter and PhyloGibbs.
The principle of ChIP-chip is simple. The first step is to cross-link the protein-DNA complex. This is done using a fixating agent, such as formaldehyde. The cross-linking can later be reversed with heat. Cross-linking kills the cell, giving a snapshot of the bound TF at a given time. The cell is then lysed, the DNA sheared by sonication and the chromatin[2] (TF-DNA complexes) is pulled down using an antibody (i.e. immunoprecipitated). If an antibody for the TF is available, then it is used; otherwise, the TF is tagged with an epitope targeted by commercially available antibodies (the latter option is cheaper, but runs the risk of altering the TF's functionality). Cross-linking is then reversed to free the bound DNA, which is then amplified, labeled with a fluorophore and dumped onto a DNA-array. The scanned array reveals the genomic regions bound by the TF. The resolution is around ~500 bp as a result of the sonication step.
In motif discovery, we are given a set of sequences that we suspect harbor binding sites for a given transcription factor. A typical scenario is data coming from expression experiments, in which we wish to analyze the promoter region of a bunch of genes that are up- or down-regulated under some condition. The goal of motif discovery is to detect the transcription factor binding motif (i.e. the sequence “pattern” bound by the TF), by assuming that it will be overrepresented in our sample of sequences. There are different strategies to accomplish this, but the standard approach uses expectation maximization (EM) and in particular Gibbs sampling or greedy search. Popular algorithms for motif discovery are MEME, Gibbs Motif Sampler or CONSENSUS. More recently, motif discovery algorithms that make use of phylogenetic foot-printing (the idea that TF-binding site will be conserved in the promoter sequences for the same gene in different species) have become available. These are not usually applied to complement experimental work, but can be used to provide a starting point for it. Popular algorithms include FootPrinter and PhyloGibbs.
Reporter assay using the beta-galactosidase (lacZ) gene.
The lacZ gene is typically fused to the promoter of interest. Differential regulation of the promoter mediated by the TF is assessed by induction of the system and evaluation of lacZ expression. Bacteria expressing lacZ appear blue when grown on a X-gal medium.
The assay is often performed using a plasmid borne construction on a lacZ(def) strain.
The principle of ChIP-chip is simple. The first step is to cross-link the protein-DNA complex. This is done using a fixating agent, such as formaldehyde. The cross-linking can later be reversed with heat. Cross-linking kills the cell, giving a snapshot of the bound TF at a given time. The cell is then lysed, the DNA sheared by sonication and the chromatin[2] (TF-DNA complexes) is pulled down using an antibody (i.e. immunoprecipitated). If an antibody for the TF is available, then it is used; otherwise, the TF is tagged with an epitope targeted by commercially available antibodies (the latter option is cheaper, but runs the risk of altering the TF's functionality). Cross-linking is then reversed to free the bound DNA, which is then amplified, labeled with a fluorophore and dumped onto a DNA-array. The scanned array reveals the genomic regions bound by the TF. The resolution is around ~500 bp as a result of the sonication step.
Electro-mobility shift-assays (or gel retardation assays) are a standard way of assessing TF-binding. A fragment of DNA of interest is amplified and labeled with a fluorophore. The fragment is left to incubate in a solution containing abundant TF and non-specific DNA (e.g. randomly cleaved DNA from salmon sperm, of all things) and then a gel is run with the incubated sample and a control (sample that has not been in contact with the TF). If the TF has bound the sample, the complex will migrate more slowly than unbound DNA through the gel, and this retarded band can be used as evidence of binding. The unspecific DNA ensures that the binding is specific to the fragment of interest and that any non-specific DNA-binding proteins left-over in the TF purification will bind there, instead of on the fragment of interest. EMSAs are typically carried out in a bunch of fragments, shown as multiple double (control+experiment) lanes in a wide picture. Certain additional controls are run in at least one of the fragments to ascertain specificity. In the most basic of these, specific competitor (the fragment of interest or a known positive control, unlabelled) is added to the reaction. This should sequester the TF and hence make the retardation band disappear, proving that the binding is indeed specific
In motif discovery, we are given a set of sequences that we suspect harbor binding sites for a given transcription factor. A typical scenario is data coming from expression experiments, in which we wish to analyze the promoter region of a bunch of genes that are up- or down-regulated under some condition. The goal of motif discovery is to detect the transcription factor binding motif (i.e. the sequence “pattern” bound by the TF), by assuming that it will be overrepresented in our sample of sequences. There are different strategies to accomplish this, but the standard approach uses expectation maximization (EM) and in particular Gibbs sampling or greedy search. Popular algorithms for motif discovery are MEME, Gibbs Motif Sampler or CONSENSUS. More recently, motif discovery algorithms that make use of phylogenetic foot-printing (the idea that TF-binding site will be conserved in the promoter sequences for the same gene in different species) have become available. These are not usually applied to complement experimental work, but can be used to provide a starting point for it. Popular algorithms include FootPrinter and PhyloGibbs.
Target-specific mutation, as opposed to non-specific mutation.
In the context of TF-binding sites, site-directed mutagenesis is typically used to establish/confirm the specific sequence and location of a site, often in tandem with EMSA.
Different positions of a putative binding site are mutated to non-consensus (or random) bases and binding to the mutated site is evaluated through EMSA or other means. Often implemented only in conserved motif positions or serially through all positions of a site.
The principle of ChIP-chip is simple. The first step is to cross-link the protein-DNA complex. This is done using a fixating agent, such as formaldehyde. The cross-linking can later be reversed with heat. Cross-linking kills the cell, giving a snapshot of the bound TF at a given time. The cell is then lysed, the DNA sheared by sonication and the chromatin[2] (TF-DNA complexes) is pulled down using an antibody (i.e. immunoprecipitated). If an antibody for the TF is available, then it is used; otherwise, the TF is tagged with an epitope targeted by commercially available antibodies (the latter option is cheaper, but runs the risk of altering the TF's functionality). Cross-linking is then reversed to free the bound DNA, which is then amplified, labeled with a fluorophore and dumped onto a DNA-array. The scanned array reveals the genomic regions bound by the TF. The resolution is around ~500 bp as a result of the sonication step.
In motif discovery, we are given a set of sequences that we suspect harbor binding sites for a given transcription factor. A typical scenario is data coming from expression experiments, in which we wish to analyze the promoter region of a bunch of genes that are up- or down-regulated under some condition. The goal of motif discovery is to detect the transcription factor binding motif (i.e. the sequence “pattern” bound by the TF), by assuming that it will be overrepresented in our sample of sequences. There are different strategies to accomplish this, but the standard approach uses expectation maximization (EM) and in particular Gibbs sampling or greedy search. Popular algorithms for motif discovery are MEME, Gibbs Motif Sampler or CONSENSUS. More recently, motif discovery algorithms that make use of phylogenetic foot-printing (the idea that TF-binding site will be conserved in the promoter sequences for the same gene in different species) have become available. These are not usually applied to complement experimental work, but can be used to provide a starting point for it. Popular algorithms include FootPrinter and PhyloGibbs.
The principle of ChIP-chip is simple. The first step is to cross-link the protein-DNA complex. This is done using a fixating agent, such as formaldehyde. The cross-linking can later be reversed with heat. Cross-linking kills the cell, giving a snapshot of the bound TF at a given time. The cell is then lysed, the DNA sheared by sonication and the chromatin[2] (TF-DNA complexes) is pulled down using an antibody (i.e. immunoprecipitated). If an antibody for the TF is available, then it is used; otherwise, the TF is tagged with an epitope targeted by commercially available antibodies (the latter option is cheaper, but runs the risk of altering the TF's functionality). Cross-linking is then reversed to free the bound DNA, which is then amplified, labeled with a fluorophore and dumped onto a DNA-array. The scanned array reveals the genomic regions bound by the TF. The resolution is around ~500 bp as a result of the sonication step.
In motif discovery, we are given a set of sequences that we suspect harbor binding sites for a given transcription factor. A typical scenario is data coming from expression experiments, in which we wish to analyze the promoter region of a bunch of genes that are up- or down-regulated under some condition. The goal of motif discovery is to detect the transcription factor binding motif (i.e. the sequence “pattern” bound by the TF), by assuming that it will be overrepresented in our sample of sequences. There are different strategies to accomplish this, but the standard approach uses expectation maximization (EM) and in particular Gibbs sampling or greedy search. Popular algorithms for motif discovery are MEME, Gibbs Motif Sampler or CONSENSUS. More recently, motif discovery algorithms that make use of phylogenetic foot-printing (the idea that TF-binding site will be conserved in the promoter sequences for the same gene in different species) have become available. These are not usually applied to complement experimental work, but can be used to provide a starting point for it. Popular algorithms include FootPrinter and PhyloGibbs.
The principle of ChIP-chip is simple. The first step is to cross-link the protein-DNA complex. This is done using a fixating agent, such as formaldehyde. The cross-linking can later be reversed with heat. Cross-linking kills the cell, giving a snapshot of the bound TF at a given time. The cell is then lysed, the DNA sheared by sonication and the chromatin[2] (TF-DNA complexes) is pulled down using an antibody (i.e. immunoprecipitated). If an antibody for the TF is available, then it is used; otherwise, the TF is tagged with an epitope targeted by commercially available antibodies (the latter option is cheaper, but runs the risk of altering the TF's functionality). Cross-linking is then reversed to free the bound DNA, which is then amplified, labeled with a fluorophore and dumped onto a DNA-array. The scanned array reveals the genomic regions bound by the TF. The resolution is around ~500 bp as a result of the sonication step.
In motif discovery, we are given a set of sequences that we suspect harbor binding sites for a given transcription factor. A typical scenario is data coming from expression experiments, in which we wish to analyze the promoter region of a bunch of genes that are up- or down-regulated under some condition. The goal of motif discovery is to detect the transcription factor binding motif (i.e. the sequence “pattern” bound by the TF), by assuming that it will be overrepresented in our sample of sequences. There are different strategies to accomplish this, but the standard approach uses expectation maximization (EM) and in particular Gibbs sampling or greedy search. Popular algorithms for motif discovery are MEME, Gibbs Motif Sampler or CONSENSUS. More recently, motif discovery algorithms that make use of phylogenetic foot-printing (the idea that TF-binding site will be conserved in the promoter sequences for the same gene in different species) have become available. These are not usually applied to complement experimental work, but can be used to provide a starting point for it. Popular algorithms include FootPrinter and PhyloGibbs.
The principle of ChIP-chip is simple. The first step is to cross-link the protein-DNA complex. This is done using a fixating agent, such as formaldehyde. The cross-linking can later be reversed with heat. Cross-linking kills the cell, giving a snapshot of the bound TF at a given time. The cell is then lysed, the DNA sheared by sonication and the chromatin[2] (TF-DNA complexes) is pulled down using an antibody (i.e. immunoprecipitated). If an antibody for the TF is available, then it is used; otherwise, the TF is tagged with an epitope targeted by commercially available antibodies (the latter option is cheaper, but runs the risk of altering the TF's functionality). Cross-linking is then reversed to free the bound DNA, which is then amplified, labeled with a fluorophore and dumped onto a DNA-array. The scanned array reveals the genomic regions bound by the TF. The resolution is around ~500 bp as a result of the sonication step.
In motif discovery, we are given a set of sequences that we suspect harbor binding sites for a given transcription factor. A typical scenario is data coming from expression experiments, in which we wish to analyze the promoter region of a bunch of genes that are up- or down-regulated under some condition. The goal of motif discovery is to detect the transcription factor binding motif (i.e. the sequence “pattern” bound by the TF), by assuming that it will be overrepresented in our sample of sequences. There are different strategies to accomplish this, but the standard approach uses expectation maximization (EM) and in particular Gibbs sampling or greedy search. Popular algorithms for motif discovery are MEME, Gibbs Motif Sampler or CONSENSUS. More recently, motif discovery algorithms that make use of phylogenetic foot-printing (the idea that TF-binding site will be conserved in the promoter sequences for the same gene in different species) have become available. These are not usually applied to complement experimental work, but can be used to provide a starting point for it. Popular algorithms include FootPrinter and PhyloGibbs.
The principle of ChIP-chip is simple. The first step is to cross-link the protein-DNA complex. This is done using a fixating agent, such as formaldehyde. The cross-linking can later be reversed with heat. Cross-linking kills the cell, giving a snapshot of the bound TF at a given time. The cell is then lysed, the DNA sheared by sonication and the chromatin[2] (TF-DNA complexes) is pulled down using an antibody (i.e. immunoprecipitated). If an antibody for the TF is available, then it is used; otherwise, the TF is tagged with an epitope targeted by commercially available antibodies (the latter option is cheaper, but runs the risk of altering the TF's functionality). Cross-linking is then reversed to free the bound DNA, which is then amplified, labeled with a fluorophore and dumped onto a DNA-array. The scanned array reveals the genomic regions bound by the TF. The resolution is around ~500 bp as a result of the sonication step.
In motif discovery, we are given a set of sequences that we suspect harbor binding sites for a given transcription factor. A typical scenario is data coming from expression experiments, in which we wish to analyze the promoter region of a bunch of genes that are up- or down-regulated under some condition. The goal of motif discovery is to detect the transcription factor binding motif (i.e. the sequence “pattern” bound by the TF), by assuming that it will be overrepresented in our sample of sequences. There are different strategies to accomplish this, but the standard approach uses expectation maximization (EM) and in particular Gibbs sampling or greedy search. Popular algorithms for motif discovery are MEME, Gibbs Motif Sampler or CONSENSUS. More recently, motif discovery algorithms that make use of phylogenetic foot-printing (the idea that TF-binding site will be conserved in the promoter sequences for the same gene in different species) have become available. These are not usually applied to complement experimental work, but can be used to provide a starting point for it. Popular algorithms include FootPrinter and PhyloGibbs.
The principle of ChIP-chip is simple. The first step is to cross-link the protein-DNA complex. This is done using a fixating agent, such as formaldehyde. The cross-linking can later be reversed with heat. Cross-linking kills the cell, giving a snapshot of the bound TF at a given time. The cell is then lysed, the DNA sheared by sonication and the chromatin[2] (TF-DNA complexes) is pulled down using an antibody (i.e. immunoprecipitated). If an antibody for the TF is available, then it is used; otherwise, the TF is tagged with an epitope targeted by commercially available antibodies (the latter option is cheaper, but runs the risk of altering the TF's functionality). Cross-linking is then reversed to free the bound DNA, which is then amplified, labeled with a fluorophore and dumped onto a DNA-array. The scanned array reveals the genomic regions bound by the TF. The resolution is around ~500 bp as a result of the sonication step.
In motif discovery, we are given a set of sequences that we suspect harbor binding sites for a given transcription factor. A typical scenario is data coming from expression experiments, in which we wish to analyze the promoter region of a bunch of genes that are up- or down-regulated under some condition. The goal of motif discovery is to detect the transcription factor binding motif (i.e. the sequence “pattern” bound by the TF), by assuming that it will be overrepresented in our sample of sequences. There are different strategies to accomplish this, but the standard approach uses expectation maximization (EM) and in particular Gibbs sampling or greedy search. Popular algorithms for motif discovery are MEME, Gibbs Motif Sampler or CONSENSUS. More recently, motif discovery algorithms that make use of phylogenetic foot-printing (the idea that TF-binding site will be conserved in the promoter sequences for the same gene in different species) have become available. These are not usually applied to complement experimental work, but can be used to provide a starting point for it. Popular algorithms include FootPrinter and PhyloGibbs.
The principle of ChIP-chip is simple. The first step is to cross-link the protein-DNA complex. This is done using a fixating agent, such as formaldehyde. The cross-linking can later be reversed with heat. Cross-linking kills the cell, giving a snapshot of the bound TF at a given time. The cell is then lysed, the DNA sheared by sonication and the chromatin[2] (TF-DNA complexes) is pulled down using an antibody (i.e. immunoprecipitated). If an antibody for the TF is available, then it is used; otherwise, the TF is tagged with an epitope targeted by commercially available antibodies (the latter option is cheaper, but runs the risk of altering the TF's functionality). Cross-linking is then reversed to free the bound DNA, which is then amplified, labeled with a fluorophore and dumped onto a DNA-array. The scanned array reveals the genomic regions bound by the TF. The resolution is around ~500 bp as a result of the sonication step.
In motif discovery, we are given a set of sequences that we suspect harbor binding sites for a given transcription factor. A typical scenario is data coming from expression experiments, in which we wish to analyze the promoter region of a bunch of genes that are up- or down-regulated under some condition. The goal of motif discovery is to detect the transcription factor binding motif (i.e. the sequence “pattern” bound by the TF), by assuming that it will be overrepresented in our sample of sequences. There are different strategies to accomplish this, but the standard approach uses expectation maximization (EM) and in particular Gibbs sampling or greedy search. Popular algorithms for motif discovery are MEME, Gibbs Motif Sampler or CONSENSUS. More recently, motif discovery algorithms that make use of phylogenetic foot-printing (the idea that TF-binding site will be conserved in the promoter sequences for the same gene in different species) have become available. These are not usually applied to complement experimental work, but can be used to provide a starting point for it. Popular algorithms include FootPrinter and PhyloGibbs.
The principle of ChIP-chip is simple. The first step is to cross-link the protein-DNA complex. This is done using a fixating agent, such as formaldehyde. The cross-linking can later be reversed with heat. Cross-linking kills the cell, giving a snapshot of the bound TF at a given time. The cell is then lysed, the DNA sheared by sonication and the chromatin[2] (TF-DNA complexes) is pulled down using an antibody (i.e. immunoprecipitated). If an antibody for the TF is available, then it is used; otherwise, the TF is tagged with an epitope targeted by commercially available antibodies (the latter option is cheaper, but runs the risk of altering the TF's functionality). Cross-linking is then reversed to free the bound DNA, which is then amplified, labeled with a fluorophore and dumped onto a DNA-array. The scanned array reveals the genomic regions bound by the TF. The resolution is around ~500 bp as a result of the sonication step.
In motif discovery, we are given a set of sequences that we suspect harbor binding sites for a given transcription factor. A typical scenario is data coming from expression experiments, in which we wish to analyze the promoter region of a bunch of genes that are up- or down-regulated under some condition. The goal of motif discovery is to detect the transcription factor binding motif (i.e. the sequence “pattern” bound by the TF), by assuming that it will be overrepresented in our sample of sequences. There are different strategies to accomplish this, but the standard approach uses expectation maximization (EM) and in particular Gibbs sampling or greedy search. Popular algorithms for motif discovery are MEME, Gibbs Motif Sampler or CONSENSUS. More recently, motif discovery algorithms that make use of phylogenetic foot-printing (the idea that TF-binding site will be conserved in the promoter sequences for the same gene in different species) have become available. These are not usually applied to complement experimental work, but can be used to provide a starting point for it. Popular algorithms include FootPrinter and PhyloGibbs.
The principle of ChIP-chip is simple. The first step is to cross-link the protein-DNA complex. This is done using a fixating agent, such as formaldehyde. The cross-linking can later be reversed with heat. Cross-linking kills the cell, giving a snapshot of the bound TF at a given time. The cell is then lysed, the DNA sheared by sonication and the chromatin[2] (TF-DNA complexes) is pulled down using an antibody (i.e. immunoprecipitated). If an antibody for the TF is available, then it is used; otherwise, the TF is tagged with an epitope targeted by commercially available antibodies (the latter option is cheaper, but runs the risk of altering the TF's functionality). Cross-linking is then reversed to free the bound DNA, which is then amplified, labeled with a fluorophore and dumped onto a DNA-array. The scanned array reveals the genomic regions bound by the TF. The resolution is around ~500 bp as a result of the sonication step.
In motif discovery, we are given a set of sequences that we suspect harbor binding sites for a given transcription factor. A typical scenario is data coming from expression experiments, in which we wish to analyze the promoter region of a bunch of genes that are up- or down-regulated under some condition. The goal of motif discovery is to detect the transcription factor binding motif (i.e. the sequence “pattern” bound by the TF), by assuming that it will be overrepresented in our sample of sequences. There are different strategies to accomplish this, but the standard approach uses expectation maximization (EM) and in particular Gibbs sampling or greedy search. Popular algorithms for motif discovery are MEME, Gibbs Motif Sampler or CONSENSUS. More recently, motif discovery algorithms that make use of phylogenetic foot-printing (the idea that TF-binding site will be conserved in the promoter sequences for the same gene in different species) have become available. These are not usually applied to complement experimental work, but can be used to provide a starting point for it. Popular algorithms include FootPrinter and PhyloGibbs.
The principle of ChIP-chip is simple. The first step is to cross-link the protein-DNA complex. This is done using a fixating agent, such as formaldehyde. The cross-linking can later be reversed with heat. Cross-linking kills the cell, giving a snapshot of the bound TF at a given time. The cell is then lysed, the DNA sheared by sonication and the chromatin[2] (TF-DNA complexes) is pulled down using an antibody (i.e. immunoprecipitated). If an antibody for the TF is available, then it is used; otherwise, the TF is tagged with an epitope targeted by commercially available antibodies (the latter option is cheaper, but runs the risk of altering the TF's functionality). Cross-linking is then reversed to free the bound DNA, which is then amplified, labeled with a fluorophore and dumped onto a DNA-array. The scanned array reveals the genomic regions bound by the TF. The resolution is around ~500 bp as a result of the sonication step.
In motif discovery, we are given a set of sequences that we suspect harbor binding sites for a given transcription factor. A typical scenario is data coming from expression experiments, in which we wish to analyze the promoter region of a bunch of genes that are up- or down-regulated under some condition. The goal of motif discovery is to detect the transcription factor binding motif (i.e. the sequence “pattern” bound by the TF), by assuming that it will be overrepresented in our sample of sequences. There are different strategies to accomplish this, but the standard approach uses expectation maximization (EM) and in particular Gibbs sampling or greedy search. Popular algorithms for motif discovery are MEME, Gibbs Motif Sampler or CONSENSUS. More recently, motif discovery algorithms that make use of phylogenetic foot-printing (the idea that TF-binding site will be conserved in the promoter sequences for the same gene in different species) have become available. These are not usually applied to complement experimental work, but can be used to provide a starting point for it. Popular algorithms include FootPrinter and PhyloGibbs.
The principle of ChIP-chip is simple. The first step is to cross-link the protein-DNA complex. This is done using a fixating agent, such as formaldehyde. The cross-linking can later be reversed with heat. Cross-linking kills the cell, giving a snapshot of the bound TF at a given time. The cell is then lysed, the DNA sheared by sonication and the chromatin[2] (TF-DNA complexes) is pulled down using an antibody (i.e. immunoprecipitated). If an antibody for the TF is available, then it is used; otherwise, the TF is tagged with an epitope targeted by commercially available antibodies (the latter option is cheaper, but runs the risk of altering the TF's functionality). Cross-linking is then reversed to free the bound DNA, which is then amplified, labeled with a fluorophore and dumped onto a DNA-array. The scanned array reveals the genomic regions bound by the TF. The resolution is around ~500 bp as a result of the sonication step.
In motif discovery, we are given a set of sequences that we suspect harbor binding sites for a given transcription factor. A typical scenario is data coming from expression experiments, in which we wish to analyze the promoter region of a bunch of genes that are up- or down-regulated under some condition. The goal of motif discovery is to detect the transcription factor binding motif (i.e. the sequence “pattern” bound by the TF), by assuming that it will be overrepresented in our sample of sequences. There are different strategies to accomplish this, but the standard approach uses expectation maximization (EM) and in particular Gibbs sampling or greedy search. Popular algorithms for motif discovery are MEME, Gibbs Motif Sampler or CONSENSUS. More recently, motif discovery algorithms that make use of phylogenetic foot-printing (the idea that TF-binding site will be conserved in the promoter sequences for the same gene in different species) have become available. These are not usually applied to complement experimental work, but can be used to provide a starting point for it. Popular algorithms include FootPrinter and PhyloGibbs.
The principle of ChIP-chip is simple. The first step is to cross-link the protein-DNA complex. This is done using a fixating agent, such as formaldehyde. The cross-linking can later be reversed with heat. Cross-linking kills the cell, giving a snapshot of the bound TF at a given time. The cell is then lysed, the DNA sheared by sonication and the chromatin[2] (TF-DNA complexes) is pulled down using an antibody (i.e. immunoprecipitated). If an antibody for the TF is available, then it is used; otherwise, the TF is tagged with an epitope targeted by commercially available antibodies (the latter option is cheaper, but runs the risk of altering the TF's functionality). Cross-linking is then reversed to free the bound DNA, which is then amplified, labeled with a fluorophore and dumped onto a DNA-array. The scanned array reveals the genomic regions bound by the TF. The resolution is around ~500 bp as a result of the sonication step.
In motif discovery, we are given a set of sequences that we suspect harbor binding sites for a given transcription factor. A typical scenario is data coming from expression experiments, in which we wish to analyze the promoter region of a bunch of genes that are up- or down-regulated under some condition. The goal of motif discovery is to detect the transcription factor binding motif (i.e. the sequence “pattern” bound by the TF), by assuming that it will be overrepresented in our sample of sequences. There are different strategies to accomplish this, but the standard approach uses expectation maximization (EM) and in particular Gibbs sampling or greedy search. Popular algorithms for motif discovery are MEME, Gibbs Motif Sampler or CONSENSUS. More recently, motif discovery algorithms that make use of phylogenetic foot-printing (the idea that TF-binding site will be conserved in the promoter sequences for the same gene in different species) have become available. These are not usually applied to complement experimental work, but can be used to provide a starting point for it. Popular algorithms include FootPrinter and PhyloGibbs.
The principle of ChIP-chip is simple. The first step is to cross-link the protein-DNA complex. This is done using a fixating agent, such as formaldehyde. The cross-linking can later be reversed with heat. Cross-linking kills the cell, giving a snapshot of the bound TF at a given time. The cell is then lysed, the DNA sheared by sonication and the chromatin[2] (TF-DNA complexes) is pulled down using an antibody (i.e. immunoprecipitated). If an antibody for the TF is available, then it is used; otherwise, the TF is tagged with an epitope targeted by commercially available antibodies (the latter option is cheaper, but runs the risk of altering the TF's functionality). Cross-linking is then reversed to free the bound DNA, which is then amplified, labeled with a fluorophore and dumped onto a DNA-array. The scanned array reveals the genomic regions bound by the TF. The resolution is around ~500 bp as a result of the sonication step.
In motif discovery, we are given a set of sequences that we suspect harbor binding sites for a given transcription factor. A typical scenario is data coming from expression experiments, in which we wish to analyze the promoter region of a bunch of genes that are up- or down-regulated under some condition. The goal of motif discovery is to detect the transcription factor binding motif (i.e. the sequence “pattern” bound by the TF), by assuming that it will be overrepresented in our sample of sequences. There are different strategies to accomplish this, but the standard approach uses expectation maximization (EM) and in particular Gibbs sampling or greedy search. Popular algorithms for motif discovery are MEME, Gibbs Motif Sampler or CONSENSUS. More recently, motif discovery algorithms that make use of phylogenetic foot-printing (the idea that TF-binding site will be conserved in the promoter sequences for the same gene in different species) have become available. These are not usually applied to complement experimental work, but can be used to provide a starting point for it. Popular algorithms include FootPrinter and PhyloGibbs.
The principle of ChIP-chip is simple. The first step is to cross-link the protein-DNA complex. This is done using a fixating agent, such as formaldehyde. The cross-linking can later be reversed with heat. Cross-linking kills the cell, giving a snapshot of the bound TF at a given time. The cell is then lysed, the DNA sheared by sonication and the chromatin[2] (TF-DNA complexes) is pulled down using an antibody (i.e. immunoprecipitated). If an antibody for the TF is available, then it is used; otherwise, the TF is tagged with an epitope targeted by commercially available antibodies (the latter option is cheaper, but runs the risk of altering the TF's functionality). Cross-linking is then reversed to free the bound DNA, which is then amplified, labeled with a fluorophore and dumped onto a DNA-array. The scanned array reveals the genomic regions bound by the TF. The resolution is around ~500 bp as a result of the sonication step.
In motif discovery, we are given a set of sequences that we suspect harbor binding sites for a given transcription factor. A typical scenario is data coming from expression experiments, in which we wish to analyze the promoter region of a bunch of genes that are up- or down-regulated under some condition. The goal of motif discovery is to detect the transcription factor binding motif (i.e. the sequence “pattern” bound by the TF), by assuming that it will be overrepresented in our sample of sequences. There are different strategies to accomplish this, but the standard approach uses expectation maximization (EM) and in particular Gibbs sampling or greedy search. Popular algorithms for motif discovery are MEME, Gibbs Motif Sampler or CONSENSUS. More recently, motif discovery algorithms that make use of phylogenetic foot-printing (the idea that TF-binding site will be conserved in the promoter sequences for the same gene in different species) have become available. These are not usually applied to complement experimental work, but can be used to provide a starting point for it. Popular algorithms include FootPrinter and PhyloGibbs.
The principle of ChIP-chip is simple. The first step is to cross-link the protein-DNA complex. This is done using a fixating agent, such as formaldehyde. The cross-linking can later be reversed with heat. Cross-linking kills the cell, giving a snapshot of the bound TF at a given time. The cell is then lysed, the DNA sheared by sonication and the chromatin[2] (TF-DNA complexes) is pulled down using an antibody (i.e. immunoprecipitated). If an antibody for the TF is available, then it is used; otherwise, the TF is tagged with an epitope targeted by commercially available antibodies (the latter option is cheaper, but runs the risk of altering the TF's functionality). Cross-linking is then reversed to free the bound DNA, which is then amplified, labeled with a fluorophore and dumped onto a DNA-array. The scanned array reveals the genomic regions bound by the TF. The resolution is around ~500 bp as a result of the sonication step.
In motif discovery, we are given a set of sequences that we suspect harbor binding sites for a given transcription factor. A typical scenario is data coming from expression experiments, in which we wish to analyze the promoter region of a bunch of genes that are up- or down-regulated under some condition. The goal of motif discovery is to detect the transcription factor binding motif (i.e. the sequence “pattern” bound by the TF), by assuming that it will be overrepresented in our sample of sequences. There are different strategies to accomplish this, but the standard approach uses expectation maximization (EM) and in particular Gibbs sampling or greedy search. Popular algorithms for motif discovery are MEME, Gibbs Motif Sampler or CONSENSUS. More recently, motif discovery algorithms that make use of phylogenetic foot-printing (the idea that TF-binding site will be conserved in the promoter sequences for the same gene in different species) have become available. These are not usually applied to complement experimental work, but can be used to provide a starting point for it. Popular algorithms include FootPrinter and PhyloGibbs.
The principle of ChIP-chip is simple. The first step is to cross-link the protein-DNA complex. This is done using a fixating agent, such as formaldehyde. The cross-linking can later be reversed with heat. Cross-linking kills the cell, giving a snapshot of the bound TF at a given time. The cell is then lysed, the DNA sheared by sonication and the chromatin[2] (TF-DNA complexes) is pulled down using an antibody (i.e. immunoprecipitated). If an antibody for the TF is available, then it is used; otherwise, the TF is tagged with an epitope targeted by commercially available antibodies (the latter option is cheaper, but runs the risk of altering the TF's functionality). Cross-linking is then reversed to free the bound DNA, which is then amplified, labeled with a fluorophore and dumped onto a DNA-array. The scanned array reveals the genomic regions bound by the TF. The resolution is around ~500 bp as a result of the sonication step.
In motif discovery, we are given a set of sequences that we suspect harbor binding sites for a given transcription factor. A typical scenario is data coming from expression experiments, in which we wish to analyze the promoter region of a bunch of genes that are up- or down-regulated under some condition. The goal of motif discovery is to detect the transcription factor binding motif (i.e. the sequence “pattern” bound by the TF), by assuming that it will be overrepresented in our sample of sequences. There are different strategies to accomplish this, but the standard approach uses expectation maximization (EM) and in particular Gibbs sampling or greedy search. Popular algorithms for motif discovery are MEME, Gibbs Motif Sampler or CONSENSUS. More recently, motif discovery algorithms that make use of phylogenetic foot-printing (the idea that TF-binding site will be conserved in the promoter sequences for the same gene in different species) have become available. These are not usually applied to complement experimental work, but can be used to provide a starting point for it. Popular algorithms include FootPrinter and PhyloGibbs.
The principle of ChIP-chip is simple. The first step is to cross-link the protein-DNA complex. This is done using a fixating agent, such as formaldehyde. The cross-linking can later be reversed with heat. Cross-linking kills the cell, giving a snapshot of the bound TF at a given time. The cell is then lysed, the DNA sheared by sonication and the chromatin[2] (TF-DNA complexes) is pulled down using an antibody (i.e. immunoprecipitated). If an antibody for the TF is available, then it is used; otherwise, the TF is tagged with an epitope targeted by commercially available antibodies (the latter option is cheaper, but runs the risk of altering the TF's functionality). Cross-linking is then reversed to free the bound DNA, which is then amplified, labeled with a fluorophore and dumped onto a DNA-array. The scanned array reveals the genomic regions bound by the TF. The resolution is around ~500 bp as a result of the sonication step.
In motif discovery, we are given a set of sequences that we suspect harbor binding sites for a given transcription factor. A typical scenario is data coming from expression experiments, in which we wish to analyze the promoter region of a bunch of genes that are up- or down-regulated under some condition. The goal of motif discovery is to detect the transcription factor binding motif (i.e. the sequence “pattern” bound by the TF), by assuming that it will be overrepresented in our sample of sequences. There are different strategies to accomplish this, but the standard approach uses expectation maximization (EM) and in particular Gibbs sampling or greedy search. Popular algorithms for motif discovery are MEME, Gibbs Motif Sampler or CONSENSUS. More recently, motif discovery algorithms that make use of phylogenetic foot-printing (the idea that TF-binding site will be conserved in the promoter sequences for the same gene in different species) have become available. These are not usually applied to complement experimental work, but can be used to provide a starting point for it. Popular algorithms include FootPrinter and PhyloGibbs.
The principle of ChIP-chip is simple. The first step is to cross-link the protein-DNA complex. This is done using a fixating agent, such as formaldehyde. The cross-linking can later be reversed with heat. Cross-linking kills the cell, giving a snapshot of the bound TF at a given time. The cell is then lysed, the DNA sheared by sonication and the chromatin[2] (TF-DNA complexes) is pulled down using an antibody (i.e. immunoprecipitated). If an antibody for the TF is available, then it is used; otherwise, the TF is tagged with an epitope targeted by commercially available antibodies (the latter option is cheaper, but runs the risk of altering the TF's functionality). Cross-linking is then reversed to free the bound DNA, which is then amplified, labeled with a fluorophore and dumped onto a DNA-array. The scanned array reveals the genomic regions bound by the TF. The resolution is around ~500 bp as a result of the sonication step.
In motif discovery, we are given a set of sequences that we suspect harbor binding sites for a given transcription factor. A typical scenario is data coming from expression experiments, in which we wish to analyze the promoter region of a bunch of genes that are up- or down-regulated under some condition. The goal of motif discovery is to detect the transcription factor binding motif (i.e. the sequence “pattern” bound by the TF), by assuming that it will be overrepresented in our sample of sequences. There are different strategies to accomplish this, but the standard approach uses expectation maximization (EM) and in particular Gibbs sampling or greedy search. Popular algorithms for motif discovery are MEME, Gibbs Motif Sampler or CONSENSUS. More recently, motif discovery algorithms that make use of phylogenetic foot-printing (the idea that TF-binding site will be conserved in the promoter sequences for the same gene in different species) have become available. These are not usually applied to complement experimental work, but can be used to provide a starting point for it. Popular algorithms include FootPrinter and PhyloGibbs.
The principle of ChIP-chip is simple. The first step is to cross-link the protein-DNA complex. This is done using a fixating agent, such as formaldehyde. The cross-linking can later be reversed with heat. Cross-linking kills the cell, giving a snapshot of the bound TF at a given time. The cell is then lysed, the DNA sheared by sonication and the chromatin[2] (TF-DNA complexes) is pulled down using an antibody (i.e. immunoprecipitated). If an antibody for the TF is available, then it is used; otherwise, the TF is tagged with an epitope targeted by commercially available antibodies (the latter option is cheaper, but runs the risk of altering the TF's functionality). Cross-linking is then reversed to free the bound DNA, which is then amplified, labeled with a fluorophore and dumped onto a DNA-array. The scanned array reveals the genomic regions bound by the TF. The resolution is around ~500 bp as a result of the sonication step.
In motif discovery, we are given a set of sequences that we suspect harbor binding sites for a given transcription factor. A typical scenario is data coming from expression experiments, in which we wish to analyze the promoter region of a bunch of genes that are up- or down-regulated under some condition. The goal of motif discovery is to detect the transcription factor binding motif (i.e. the sequence “pattern” bound by the TF), by assuming that it will be overrepresented in our sample of sequences. There are different strategies to accomplish this, but the standard approach uses expectation maximization (EM) and in particular Gibbs sampling or greedy search. Popular algorithms for motif discovery are MEME, Gibbs Motif Sampler or CONSENSUS. More recently, motif discovery algorithms that make use of phylogenetic foot-printing (the idea that TF-binding site will be conserved in the promoter sequences for the same gene in different species) have become available. These are not usually applied to complement experimental work, but can be used to provide a starting point for it. Popular algorithms include FootPrinter and PhyloGibbs.
Reporter assay using the beta-galactosidase (lacZ) gene.
The lacZ gene is typically fused to the promoter of interest. Differential regulation of the promoter mediated by the TF is assessed by induction of the system and evaluation of lacZ expression. Bacteria expressing lacZ appear blue when grown on a X-gal medium.
The assay is often performed using a plasmid borne construction on a lacZ(def) strain.
The principle of ChIP-chip is simple. The first step is to cross-link the protein-DNA complex. This is done using a fixating agent, such as formaldehyde. The cross-linking can later be reversed with heat. Cross-linking kills the cell, giving a snapshot of the bound TF at a given time. The cell is then lysed, the DNA sheared by sonication and the chromatin[2] (TF-DNA complexes) is pulled down using an antibody (i.e. immunoprecipitated). If an antibody for the TF is available, then it is used; otherwise, the TF is tagged with an epitope targeted by commercially available antibodies (the latter option is cheaper, but runs the risk of altering the TF's functionality). Cross-linking is then reversed to free the bound DNA, which is then amplified, labeled with a fluorophore and dumped onto a DNA-array. The scanned array reveals the genomic regions bound by the TF. The resolution is around ~500 bp as a result of the sonication step.
Electro-mobility shift-assays (or gel retardation assays) are a standard way of assessing TF-binding. A fragment of DNA of interest is amplified and labeled with a fluorophore. The fragment is left to incubate in a solution containing abundant TF and non-specific DNA (e.g. randomly cleaved DNA from salmon sperm, of all things) and then a gel is run with the incubated sample and a control (sample that has not been in contact with the TF). If the TF has bound the sample, the complex will migrate more slowly than unbound DNA through the gel, and this retarded band can be used as evidence of binding. The unspecific DNA ensures that the binding is specific to the fragment of interest and that any non-specific DNA-binding proteins left-over in the TF purification will bind there, instead of on the fragment of interest. EMSAs are typically carried out in a bunch of fragments, shown as multiple double (control+experiment) lanes in a wide picture. Certain additional controls are run in at least one of the fragments to ascertain specificity. In the most basic of these, specific competitor (the fragment of interest or a known positive control, unlabelled) is added to the reaction. This should sequester the TF and hence make the retardation band disappear, proving that the binding is indeed specific
In motif discovery, we are given a set of sequences that we suspect harbor binding sites for a given transcription factor. A typical scenario is data coming from expression experiments, in which we wish to analyze the promoter region of a bunch of genes that are up- or down-regulated under some condition. The goal of motif discovery is to detect the transcription factor binding motif (i.e. the sequence “pattern” bound by the TF), by assuming that it will be overrepresented in our sample of sequences. There are different strategies to accomplish this, but the standard approach uses expectation maximization (EM) and in particular Gibbs sampling or greedy search. Popular algorithms for motif discovery are MEME, Gibbs Motif Sampler or CONSENSUS. More recently, motif discovery algorithms that make use of phylogenetic foot-printing (the idea that TF-binding site will be conserved in the promoter sequences for the same gene in different species) have become available. These are not usually applied to complement experimental work, but can be used to provide a starting point for it. Popular algorithms include FootPrinter and PhyloGibbs.
Target-specific mutation, as opposed to non-specific mutation.
In the context of TF-binding sites, site-directed mutagenesis is typically used to establish/confirm the specific sequence and location of a site, often in tandem with EMSA.
Different positions of a putative binding site are mutated to non-consensus (or random) bases and binding to the mutated site is evaluated through EMSA or other means. Often implemented only in conserved motif positions or serially through all positions of a site.
The principle of ChIP-chip is simple. The first step is to cross-link the protein-DNA complex. This is done using a fixating agent, such as formaldehyde. The cross-linking can later be reversed with heat. Cross-linking kills the cell, giving a snapshot of the bound TF at a given time. The cell is then lysed, the DNA sheared by sonication and the chromatin[2] (TF-DNA complexes) is pulled down using an antibody (i.e. immunoprecipitated). If an antibody for the TF is available, then it is used; otherwise, the TF is tagged with an epitope targeted by commercially available antibodies (the latter option is cheaper, but runs the risk of altering the TF's functionality). Cross-linking is then reversed to free the bound DNA, which is then amplified, labeled with a fluorophore and dumped onto a DNA-array. The scanned array reveals the genomic regions bound by the TF. The resolution is around ~500 bp as a result of the sonication step.
In motif discovery, we are given a set of sequences that we suspect harbor binding sites for a given transcription factor. A typical scenario is data coming from expression experiments, in which we wish to analyze the promoter region of a bunch of genes that are up- or down-regulated under some condition. The goal of motif discovery is to detect the transcription factor binding motif (i.e. the sequence “pattern” bound by the TF), by assuming that it will be overrepresented in our sample of sequences. There are different strategies to accomplish this, but the standard approach uses expectation maximization (EM) and in particular Gibbs sampling or greedy search. Popular algorithms for motif discovery are MEME, Gibbs Motif Sampler or CONSENSUS. More recently, motif discovery algorithms that make use of phylogenetic foot-printing (the idea that TF-binding site will be conserved in the promoter sequences for the same gene in different species) have become available. These are not usually applied to complement experimental work, but can be used to provide a starting point for it. Popular algorithms include FootPrinter and PhyloGibbs.
The principle of ChIP-chip is simple. The first step is to cross-link the protein-DNA complex. This is done using a fixating agent, such as formaldehyde. The cross-linking can later be reversed with heat. Cross-linking kills the cell, giving a snapshot of the bound TF at a given time. The cell is then lysed, the DNA sheared by sonication and the chromatin[2] (TF-DNA complexes) is pulled down using an antibody (i.e. immunoprecipitated). If an antibody for the TF is available, then it is used; otherwise, the TF is tagged with an epitope targeted by commercially available antibodies (the latter option is cheaper, but runs the risk of altering the TF's functionality). Cross-linking is then reversed to free the bound DNA, which is then amplified, labeled with a fluorophore and dumped onto a DNA-array. The scanned array reveals the genomic regions bound by the TF. The resolution is around ~500 bp as a result of the sonication step.
In motif discovery, we are given a set of sequences that we suspect harbor binding sites for a given transcription factor. A typical scenario is data coming from expression experiments, in which we wish to analyze the promoter region of a bunch of genes that are up- or down-regulated under some condition. The goal of motif discovery is to detect the transcription factor binding motif (i.e. the sequence “pattern” bound by the TF), by assuming that it will be overrepresented in our sample of sequences. There are different strategies to accomplish this, but the standard approach uses expectation maximization (EM) and in particular Gibbs sampling or greedy search. Popular algorithms for motif discovery are MEME, Gibbs Motif Sampler or CONSENSUS. More recently, motif discovery algorithms that make use of phylogenetic foot-printing (the idea that TF-binding site will be conserved in the promoter sequences for the same gene in different species) have become available. These are not usually applied to complement experimental work, but can be used to provide a starting point for it. Popular algorithms include FootPrinter and PhyloGibbs.
The principle of ChIP-chip is simple. The first step is to cross-link the protein-DNA complex. This is done using a fixating agent, such as formaldehyde. The cross-linking can later be reversed with heat. Cross-linking kills the cell, giving a snapshot of the bound TF at a given time. The cell is then lysed, the DNA sheared by sonication and the chromatin[2] (TF-DNA complexes) is pulled down using an antibody (i.e. immunoprecipitated). If an antibody for the TF is available, then it is used; otherwise, the TF is tagged with an epitope targeted by commercially available antibodies (the latter option is cheaper, but runs the risk of altering the TF's functionality). Cross-linking is then reversed to free the bound DNA, which is then amplified, labeled with a fluorophore and dumped onto a DNA-array. The scanned array reveals the genomic regions bound by the TF. The resolution is around ~500 bp as a result of the sonication step.
In motif discovery, we are given a set of sequences that we suspect harbor binding sites for a given transcription factor. A typical scenario is data coming from expression experiments, in which we wish to analyze the promoter region of a bunch of genes that are up- or down-regulated under some condition. The goal of motif discovery is to detect the transcription factor binding motif (i.e. the sequence “pattern” bound by the TF), by assuming that it will be overrepresented in our sample of sequences. There are different strategies to accomplish this, but the standard approach uses expectation maximization (EM) and in particular Gibbs sampling or greedy search. Popular algorithms for motif discovery are MEME, Gibbs Motif Sampler or CONSENSUS. More recently, motif discovery algorithms that make use of phylogenetic foot-printing (the idea that TF-binding site will be conserved in the promoter sequences for the same gene in different species) have become available. These are not usually applied to complement experimental work, but can be used to provide a starting point for it. Popular algorithms include FootPrinter and PhyloGibbs.
The principle of ChIP-chip is simple. The first step is to cross-link the protein-DNA complex. This is done using a fixating agent, such as formaldehyde. The cross-linking can later be reversed with heat. Cross-linking kills the cell, giving a snapshot of the bound TF at a given time. The cell is then lysed, the DNA sheared by sonication and the chromatin[2] (TF-DNA complexes) is pulled down using an antibody (i.e. immunoprecipitated). If an antibody for the TF is available, then it is used; otherwise, the TF is tagged with an epitope targeted by commercially available antibodies (the latter option is cheaper, but runs the risk of altering the TF's functionality). Cross-linking is then reversed to free the bound DNA, which is then amplified, labeled with a fluorophore and dumped onto a DNA-array. The scanned array reveals the genomic regions bound by the TF. The resolution is around ~500 bp as a result of the sonication step.
In motif discovery, we are given a set of sequences that we suspect harbor binding sites for a given transcription factor. A typical scenario is data coming from expression experiments, in which we wish to analyze the promoter region of a bunch of genes that are up- or down-regulated under some condition. The goal of motif discovery is to detect the transcription factor binding motif (i.e. the sequence “pattern” bound by the TF), by assuming that it will be overrepresented in our sample of sequences. There are different strategies to accomplish this, but the standard approach uses expectation maximization (EM) and in particular Gibbs sampling or greedy search. Popular algorithms for motif discovery are MEME, Gibbs Motif Sampler or CONSENSUS. More recently, motif discovery algorithms that make use of phylogenetic foot-printing (the idea that TF-binding site will be conserved in the promoter sequences for the same gene in different species) have become available. These are not usually applied to complement experimental work, but can be used to provide a starting point for it. Popular algorithms include FootPrinter and PhyloGibbs.
The principle of ChIP-chip is simple. The first step is to cross-link the protein-DNA complex. This is done using a fixating agent, such as formaldehyde. The cross-linking can later be reversed with heat. Cross-linking kills the cell, giving a snapshot of the bound TF at a given time. The cell is then lysed, the DNA sheared by sonication and the chromatin[2] (TF-DNA complexes) is pulled down using an antibody (i.e. immunoprecipitated). If an antibody for the TF is available, then it is used; otherwise, the TF is tagged with an epitope targeted by commercially available antibodies (the latter option is cheaper, but runs the risk of altering the TF's functionality). Cross-linking is then reversed to free the bound DNA, which is then amplified, labeled with a fluorophore and dumped onto a DNA-array. The scanned array reveals the genomic regions bound by the TF. The resolution is around ~500 bp as a result of the sonication step.
In motif discovery, we are given a set of sequences that we suspect harbor binding sites for a given transcription factor. A typical scenario is data coming from expression experiments, in which we wish to analyze the promoter region of a bunch of genes that are up- or down-regulated under some condition. The goal of motif discovery is to detect the transcription factor binding motif (i.e. the sequence “pattern” bound by the TF), by assuming that it will be overrepresented in our sample of sequences. There are different strategies to accomplish this, but the standard approach uses expectation maximization (EM) and in particular Gibbs sampling or greedy search. Popular algorithms for motif discovery are MEME, Gibbs Motif Sampler or CONSENSUS. More recently, motif discovery algorithms that make use of phylogenetic foot-printing (the idea that TF-binding site will be conserved in the promoter sequences for the same gene in different species) have become available. These are not usually applied to complement experimental work, but can be used to provide a starting point for it. Popular algorithms include FootPrinter and PhyloGibbs.
The principle of ChIP-chip is simple. The first step is to cross-link the protein-DNA complex. This is done using a fixating agent, such as formaldehyde. The cross-linking can later be reversed with heat. Cross-linking kills the cell, giving a snapshot of the bound TF at a given time. The cell is then lysed, the DNA sheared by sonication and the chromatin[2] (TF-DNA complexes) is pulled down using an antibody (i.e. immunoprecipitated). If an antibody for the TF is available, then it is used; otherwise, the TF is tagged with an epitope targeted by commercially available antibodies (the latter option is cheaper, but runs the risk of altering the TF's functionality). Cross-linking is then reversed to free the bound DNA, which is then amplified, labeled with a fluorophore and dumped onto a DNA-array. The scanned array reveals the genomic regions bound by the TF. The resolution is around ~500 bp as a result of the sonication step.
In motif discovery, we are given a set of sequences that we suspect harbor binding sites for a given transcription factor. A typical scenario is data coming from expression experiments, in which we wish to analyze the promoter region of a bunch of genes that are up- or down-regulated under some condition. The goal of motif discovery is to detect the transcription factor binding motif (i.e. the sequence “pattern” bound by the TF), by assuming that it will be overrepresented in our sample of sequences. There are different strategies to accomplish this, but the standard approach uses expectation maximization (EM) and in particular Gibbs sampling or greedy search. Popular algorithms for motif discovery are MEME, Gibbs Motif Sampler or CONSENSUS. More recently, motif discovery algorithms that make use of phylogenetic foot-printing (the idea that TF-binding site will be conserved in the promoter sequences for the same gene in different species) have become available. These are not usually applied to complement experimental work, but can be used to provide a starting point for it. Popular algorithms include FootPrinter and PhyloGibbs.
The principle of ChIP-chip is simple. The first step is to cross-link the protein-DNA complex. This is done using a fixating agent, such as formaldehyde. The cross-linking can later be reversed with heat. Cross-linking kills the cell, giving a snapshot of the bound TF at a given time. The cell is then lysed, the DNA sheared by sonication and the chromatin[2] (TF-DNA complexes) is pulled down using an antibody (i.e. immunoprecipitated). If an antibody for the TF is available, then it is used; otherwise, the TF is tagged with an epitope targeted by commercially available antibodies (the latter option is cheaper, but runs the risk of altering the TF's functionality). Cross-linking is then reversed to free the bound DNA, which is then amplified, labeled with a fluorophore and dumped onto a DNA-array. The scanned array reveals the genomic regions bound by the TF. The resolution is around ~500 bp as a result of the sonication step.
In motif discovery, we are given a set of sequences that we suspect harbor binding sites for a given transcription factor. A typical scenario is data coming from expression experiments, in which we wish to analyze the promoter region of a bunch of genes that are up- or down-regulated under some condition. The goal of motif discovery is to detect the transcription factor binding motif (i.e. the sequence “pattern” bound by the TF), by assuming that it will be overrepresented in our sample of sequences. There are different strategies to accomplish this, but the standard approach uses expectation maximization (EM) and in particular Gibbs sampling or greedy search. Popular algorithms for motif discovery are MEME, Gibbs Motif Sampler or CONSENSUS. More recently, motif discovery algorithms that make use of phylogenetic foot-printing (the idea that TF-binding site will be conserved in the promoter sequences for the same gene in different species) have become available. These are not usually applied to complement experimental work, but can be used to provide a starting point for it. Popular algorithms include FootPrinter and PhyloGibbs.
The principle of ChIP-chip is simple. The first step is to cross-link the protein-DNA complex. This is done using a fixating agent, such as formaldehyde. The cross-linking can later be reversed with heat. Cross-linking kills the cell, giving a snapshot of the bound TF at a given time. The cell is then lysed, the DNA sheared by sonication and the chromatin[2] (TF-DNA complexes) is pulled down using an antibody (i.e. immunoprecipitated). If an antibody for the TF is available, then it is used; otherwise, the TF is tagged with an epitope targeted by commercially available antibodies (the latter option is cheaper, but runs the risk of altering the TF's functionality). Cross-linking is then reversed to free the bound DNA, which is then amplified, labeled with a fluorophore and dumped onto a DNA-array. The scanned array reveals the genomic regions bound by the TF. The resolution is around ~500 bp as a result of the sonication step.
In motif discovery, we are given a set of sequences that we suspect harbor binding sites for a given transcription factor. A typical scenario is data coming from expression experiments, in which we wish to analyze the promoter region of a bunch of genes that are up- or down-regulated under some condition. The goal of motif discovery is to detect the transcription factor binding motif (i.e. the sequence “pattern” bound by the TF), by assuming that it will be overrepresented in our sample of sequences. There are different strategies to accomplish this, but the standard approach uses expectation maximization (EM) and in particular Gibbs sampling or greedy search. Popular algorithms for motif discovery are MEME, Gibbs Motif Sampler or CONSENSUS. More recently, motif discovery algorithms that make use of phylogenetic foot-printing (the idea that TF-binding site will be conserved in the promoter sequences for the same gene in different species) have become available. These are not usually applied to complement experimental work, but can be used to provide a starting point for it. Popular algorithms include FootPrinter and PhyloGibbs.
The principle of ChIP-chip is simple. The first step is to cross-link the protein-DNA complex. This is done using a fixating agent, such as formaldehyde. The cross-linking can later be reversed with heat. Cross-linking kills the cell, giving a snapshot of the bound TF at a given time. The cell is then lysed, the DNA sheared by sonication and the chromatin[2] (TF-DNA complexes) is pulled down using an antibody (i.e. immunoprecipitated). If an antibody for the TF is available, then it is used; otherwise, the TF is tagged with an epitope targeted by commercially available antibodies (the latter option is cheaper, but runs the risk of altering the TF's functionality). Cross-linking is then reversed to free the bound DNA, which is then amplified, labeled with a fluorophore and dumped onto a DNA-array. The scanned array reveals the genomic regions bound by the TF. The resolution is around ~500 bp as a result of the sonication step.
In motif discovery, we are given a set of sequences that we suspect harbor binding sites for a given transcription factor. A typical scenario is data coming from expression experiments, in which we wish to analyze the promoter region of a bunch of genes that are up- or down-regulated under some condition. The goal of motif discovery is to detect the transcription factor binding motif (i.e. the sequence “pattern” bound by the TF), by assuming that it will be overrepresented in our sample of sequences. There are different strategies to accomplish this, but the standard approach uses expectation maximization (EM) and in particular Gibbs sampling or greedy search. Popular algorithms for motif discovery are MEME, Gibbs Motif Sampler or CONSENSUS. More recently, motif discovery algorithms that make use of phylogenetic foot-printing (the idea that TF-binding site will be conserved in the promoter sequences for the same gene in different species) have become available. These are not usually applied to complement experimental work, but can be used to provide a starting point for it. Popular algorithms include FootPrinter and PhyloGibbs.
The principle of ChIP-chip is simple. The first step is to cross-link the protein-DNA complex. This is done using a fixating agent, such as formaldehyde. The cross-linking can later be reversed with heat. Cross-linking kills the cell, giving a snapshot of the bound TF at a given time. The cell is then lysed, the DNA sheared by sonication and the chromatin[2] (TF-DNA complexes) is pulled down using an antibody (i.e. immunoprecipitated). If an antibody for the TF is available, then it is used; otherwise, the TF is tagged with an epitope targeted by commercially available antibodies (the latter option is cheaper, but runs the risk of altering the TF's functionality). Cross-linking is then reversed to free the bound DNA, which is then amplified, labeled with a fluorophore and dumped onto a DNA-array. The scanned array reveals the genomic regions bound by the TF. The resolution is around ~500 bp as a result of the sonication step.
In motif discovery, we are given a set of sequences that we suspect harbor binding sites for a given transcription factor. A typical scenario is data coming from expression experiments, in which we wish to analyze the promoter region of a bunch of genes that are up- or down-regulated under some condition. The goal of motif discovery is to detect the transcription factor binding motif (i.e. the sequence “pattern” bound by the TF), by assuming that it will be overrepresented in our sample of sequences. There are different strategies to accomplish this, but the standard approach uses expectation maximization (EM) and in particular Gibbs sampling or greedy search. Popular algorithms for motif discovery are MEME, Gibbs Motif Sampler or CONSENSUS. More recently, motif discovery algorithms that make use of phylogenetic foot-printing (the idea that TF-binding site will be conserved in the promoter sequences for the same gene in different species) have become available. These are not usually applied to complement experimental work, but can be used to provide a starting point for it. Popular algorithms include FootPrinter and PhyloGibbs.
The principle of ChIP-chip is simple. The first step is to cross-link the protein-DNA complex. This is done using a fixating agent, such as formaldehyde. The cross-linking can later be reversed with heat. Cross-linking kills the cell, giving a snapshot of the bound TF at a given time. The cell is then lysed, the DNA sheared by sonication and the chromatin[2] (TF-DNA complexes) is pulled down using an antibody (i.e. immunoprecipitated). If an antibody for the TF is available, then it is used; otherwise, the TF is tagged with an epitope targeted by commercially available antibodies (the latter option is cheaper, but runs the risk of altering the TF's functionality). Cross-linking is then reversed to free the bound DNA, which is then amplified, labeled with a fluorophore and dumped onto a DNA-array. The scanned array reveals the genomic regions bound by the TF. The resolution is around ~500 bp as a result of the sonication step.
In motif discovery, we are given a set of sequences that we suspect harbor binding sites for a given transcription factor. A typical scenario is data coming from expression experiments, in which we wish to analyze the promoter region of a bunch of genes that are up- or down-regulated under some condition. The goal of motif discovery is to detect the transcription factor binding motif (i.e. the sequence “pattern” bound by the TF), by assuming that it will be overrepresented in our sample of sequences. There are different strategies to accomplish this, but the standard approach uses expectation maximization (EM) and in particular Gibbs sampling or greedy search. Popular algorithms for motif discovery are MEME, Gibbs Motif Sampler or CONSENSUS. More recently, motif discovery algorithms that make use of phylogenetic foot-printing (the idea that TF-binding site will be conserved in the promoter sequences for the same gene in different species) have become available. These are not usually applied to complement experimental work, but can be used to provide a starting point for it. Popular algorithms include FootPrinter and PhyloGibbs.
The principle of ChIP-chip is simple. The first step is to cross-link the protein-DNA complex. This is done using a fixating agent, such as formaldehyde. The cross-linking can later be reversed with heat. Cross-linking kills the cell, giving a snapshot of the bound TF at a given time. The cell is then lysed, the DNA sheared by sonication and the chromatin[2] (TF-DNA complexes) is pulled down using an antibody (i.e. immunoprecipitated). If an antibody for the TF is available, then it is used; otherwise, the TF is tagged with an epitope targeted by commercially available antibodies (the latter option is cheaper, but runs the risk of altering the TF's functionality). Cross-linking is then reversed to free the bound DNA, which is then amplified, labeled with a fluorophore and dumped onto a DNA-array. The scanned array reveals the genomic regions bound by the TF. The resolution is around ~500 bp as a result of the sonication step.
In motif discovery, we are given a set of sequences that we suspect harbor binding sites for a given transcription factor. A typical scenario is data coming from expression experiments, in which we wish to analyze the promoter region of a bunch of genes that are up- or down-regulated under some condition. The goal of motif discovery is to detect the transcription factor binding motif (i.e. the sequence “pattern” bound by the TF), by assuming that it will be overrepresented in our sample of sequences. There are different strategies to accomplish this, but the standard approach uses expectation maximization (EM) and in particular Gibbs sampling or greedy search. Popular algorithms for motif discovery are MEME, Gibbs Motif Sampler or CONSENSUS. More recently, motif discovery algorithms that make use of phylogenetic foot-printing (the idea that TF-binding site will be conserved in the promoter sequences for the same gene in different species) have become available. These are not usually applied to complement experimental work, but can be used to provide a starting point for it. Popular algorithms include FootPrinter and PhyloGibbs.
The principle of ChIP-chip is simple. The first step is to cross-link the protein-DNA complex. This is done using a fixating agent, such as formaldehyde. The cross-linking can later be reversed with heat. Cross-linking kills the cell, giving a snapshot of the bound TF at a given time. The cell is then lysed, the DNA sheared by sonication and the chromatin[2] (TF-DNA complexes) is pulled down using an antibody (i.e. immunoprecipitated). If an antibody for the TF is available, then it is used; otherwise, the TF is tagged with an epitope targeted by commercially available antibodies (the latter option is cheaper, but runs the risk of altering the TF's functionality). Cross-linking is then reversed to free the bound DNA, which is then amplified, labeled with a fluorophore and dumped onto a DNA-array. The scanned array reveals the genomic regions bound by the TF. The resolution is around ~500 bp as a result of the sonication step.
In motif discovery, we are given a set of sequences that we suspect harbor binding sites for a given transcription factor. A typical scenario is data coming from expression experiments, in which we wish to analyze the promoter region of a bunch of genes that are up- or down-regulated under some condition. The goal of motif discovery is to detect the transcription factor binding motif (i.e. the sequence “pattern” bound by the TF), by assuming that it will be overrepresented in our sample of sequences. There are different strategies to accomplish this, but the standard approach uses expectation maximization (EM) and in particular Gibbs sampling or greedy search. Popular algorithms for motif discovery are MEME, Gibbs Motif Sampler or CONSENSUS. More recently, motif discovery algorithms that make use of phylogenetic foot-printing (the idea that TF-binding site will be conserved in the promoter sequences for the same gene in different species) have become available. These are not usually applied to complement experimental work, but can be used to provide a starting point for it. Popular algorithms include FootPrinter and PhyloGibbs.
The principle of ChIP-chip is simple. The first step is to cross-link the protein-DNA complex. This is done using a fixating agent, such as formaldehyde. The cross-linking can later be reversed with heat. Cross-linking kills the cell, giving a snapshot of the bound TF at a given time. The cell is then lysed, the DNA sheared by sonication and the chromatin[2] (TF-DNA complexes) is pulled down using an antibody (i.e. immunoprecipitated). If an antibody for the TF is available, then it is used; otherwise, the TF is tagged with an epitope targeted by commercially available antibodies (the latter option is cheaper, but runs the risk of altering the TF's functionality). Cross-linking is then reversed to free the bound DNA, which is then amplified, labeled with a fluorophore and dumped onto a DNA-array. The scanned array reveals the genomic regions bound by the TF. The resolution is around ~500 bp as a result of the sonication step.
In motif discovery, we are given a set of sequences that we suspect harbor binding sites for a given transcription factor. A typical scenario is data coming from expression experiments, in which we wish to analyze the promoter region of a bunch of genes that are up- or down-regulated under some condition. The goal of motif discovery is to detect the transcription factor binding motif (i.e. the sequence “pattern” bound by the TF), by assuming that it will be overrepresented in our sample of sequences. There are different strategies to accomplish this, but the standard approach uses expectation maximization (EM) and in particular Gibbs sampling or greedy search. Popular algorithms for motif discovery are MEME, Gibbs Motif Sampler or CONSENSUS. More recently, motif discovery algorithms that make use of phylogenetic foot-printing (the idea that TF-binding site will be conserved in the promoter sequences for the same gene in different species) have become available. These are not usually applied to complement experimental work, but can be used to provide a starting point for it. Popular algorithms include FootPrinter and PhyloGibbs.
The principle of ChIP-chip is simple. The first step is to cross-link the protein-DNA complex. This is done using a fixating agent, such as formaldehyde. The cross-linking can later be reversed with heat. Cross-linking kills the cell, giving a snapshot of the bound TF at a given time. The cell is then lysed, the DNA sheared by sonication and the chromatin[2] (TF-DNA complexes) is pulled down using an antibody (i.e. immunoprecipitated). If an antibody for the TF is available, then it is used; otherwise, the TF is tagged with an epitope targeted by commercially available antibodies (the latter option is cheaper, but runs the risk of altering the TF's functionality). Cross-linking is then reversed to free the bound DNA, which is then amplified, labeled with a fluorophore and dumped onto a DNA-array. The scanned array reveals the genomic regions bound by the TF. The resolution is around ~500 bp as a result of the sonication step.
In motif discovery, we are given a set of sequences that we suspect harbor binding sites for a given transcription factor. A typical scenario is data coming from expression experiments, in which we wish to analyze the promoter region of a bunch of genes that are up- or down-regulated under some condition. The goal of motif discovery is to detect the transcription factor binding motif (i.e. the sequence “pattern” bound by the TF), by assuming that it will be overrepresented in our sample of sequences. There are different strategies to accomplish this, but the standard approach uses expectation maximization (EM) and in particular Gibbs sampling or greedy search. Popular algorithms for motif discovery are MEME, Gibbs Motif Sampler or CONSENSUS. More recently, motif discovery algorithms that make use of phylogenetic foot-printing (the idea that TF-binding site will be conserved in the promoter sequences for the same gene in different species) have become available. These are not usually applied to complement experimental work, but can be used to provide a starting point for it. Popular algorithms include FootPrinter and PhyloGibbs.
The principle of ChIP-chip is simple. The first step is to cross-link the protein-DNA complex. This is done using a fixating agent, such as formaldehyde. The cross-linking can later be reversed with heat. Cross-linking kills the cell, giving a snapshot of the bound TF at a given time. The cell is then lysed, the DNA sheared by sonication and the chromatin[2] (TF-DNA complexes) is pulled down using an antibody (i.e. immunoprecipitated). If an antibody for the TF is available, then it is used; otherwise, the TF is tagged with an epitope targeted by commercially available antibodies (the latter option is cheaper, but runs the risk of altering the TF's functionality). Cross-linking is then reversed to free the bound DNA, which is then amplified, labeled with a fluorophore and dumped onto a DNA-array. The scanned array reveals the genomic regions bound by the TF. The resolution is around ~500 bp as a result of the sonication step.
In motif discovery, we are given a set of sequences that we suspect harbor binding sites for a given transcription factor. A typical scenario is data coming from expression experiments, in which we wish to analyze the promoter region of a bunch of genes that are up- or down-regulated under some condition. The goal of motif discovery is to detect the transcription factor binding motif (i.e. the sequence “pattern” bound by the TF), by assuming that it will be overrepresented in our sample of sequences. There are different strategies to accomplish this, but the standard approach uses expectation maximization (EM) and in particular Gibbs sampling or greedy search. Popular algorithms for motif discovery are MEME, Gibbs Motif Sampler or CONSENSUS. More recently, motif discovery algorithms that make use of phylogenetic foot-printing (the idea that TF-binding site will be conserved in the promoter sequences for the same gene in different species) have become available. These are not usually applied to complement experimental work, but can be used to provide a starting point for it. Popular algorithms include FootPrinter and PhyloGibbs.
The principle of ChIP-chip is simple. The first step is to cross-link the protein-DNA complex. This is done using a fixating agent, such as formaldehyde. The cross-linking can later be reversed with heat. Cross-linking kills the cell, giving a snapshot of the bound TF at a given time. The cell is then lysed, the DNA sheared by sonication and the chromatin[2] (TF-DNA complexes) is pulled down using an antibody (i.e. immunoprecipitated). If an antibody for the TF is available, then it is used; otherwise, the TF is tagged with an epitope targeted by commercially available antibodies (the latter option is cheaper, but runs the risk of altering the TF's functionality). Cross-linking is then reversed to free the bound DNA, which is then amplified, labeled with a fluorophore and dumped onto a DNA-array. The scanned array reveals the genomic regions bound by the TF. The resolution is around ~500 bp as a result of the sonication step.
In motif discovery, we are given a set of sequences that we suspect harbor binding sites for a given transcription factor. A typical scenario is data coming from expression experiments, in which we wish to analyze the promoter region of a bunch of genes that are up- or down-regulated under some condition. The goal of motif discovery is to detect the transcription factor binding motif (i.e. the sequence “pattern” bound by the TF), by assuming that it will be overrepresented in our sample of sequences. There are different strategies to accomplish this, but the standard approach uses expectation maximization (EM) and in particular Gibbs sampling or greedy search. Popular algorithms for motif discovery are MEME, Gibbs Motif Sampler or CONSENSUS. More recently, motif discovery algorithms that make use of phylogenetic foot-printing (the idea that TF-binding site will be conserved in the promoter sequences for the same gene in different species) have become available. These are not usually applied to complement experimental work, but can be used to provide a starting point for it. Popular algorithms include FootPrinter and PhyloGibbs.
The principle of ChIP-chip is simple. The first step is to cross-link the protein-DNA complex. This is done using a fixating agent, such as formaldehyde. The cross-linking can later be reversed with heat. Cross-linking kills the cell, giving a snapshot of the bound TF at a given time. The cell is then lysed, the DNA sheared by sonication and the chromatin[2] (TF-DNA complexes) is pulled down using an antibody (i.e. immunoprecipitated). If an antibody for the TF is available, then it is used; otherwise, the TF is tagged with an epitope targeted by commercially available antibodies (the latter option is cheaper, but runs the risk of altering the TF's functionality). Cross-linking is then reversed to free the bound DNA, which is then amplified, labeled with a fluorophore and dumped onto a DNA-array. The scanned array reveals the genomic regions bound by the TF. The resolution is around ~500 bp as a result of the sonication step.
In motif discovery, we are given a set of sequences that we suspect harbor binding sites for a given transcription factor. A typical scenario is data coming from expression experiments, in which we wish to analyze the promoter region of a bunch of genes that are up- or down-regulated under some condition. The goal of motif discovery is to detect the transcription factor binding motif (i.e. the sequence “pattern” bound by the TF), by assuming that it will be overrepresented in our sample of sequences. There are different strategies to accomplish this, but the standard approach uses expectation maximization (EM) and in particular Gibbs sampling or greedy search. Popular algorithms for motif discovery are MEME, Gibbs Motif Sampler or CONSENSUS. More recently, motif discovery algorithms that make use of phylogenetic foot-printing (the idea that TF-binding site will be conserved in the promoter sequences for the same gene in different species) have become available. These are not usually applied to complement experimental work, but can be used to provide a starting point for it. Popular algorithms include FootPrinter and PhyloGibbs.
The principle of ChIP-chip is simple. The first step is to cross-link the protein-DNA complex. This is done using a fixating agent, such as formaldehyde. The cross-linking can later be reversed with heat. Cross-linking kills the cell, giving a snapshot of the bound TF at a given time. The cell is then lysed, the DNA sheared by sonication and the chromatin[2] (TF-DNA complexes) is pulled down using an antibody (i.e. immunoprecipitated). If an antibody for the TF is available, then it is used; otherwise, the TF is tagged with an epitope targeted by commercially available antibodies (the latter option is cheaper, but runs the risk of altering the TF's functionality). Cross-linking is then reversed to free the bound DNA, which is then amplified, labeled with a fluorophore and dumped onto a DNA-array. The scanned array reveals the genomic regions bound by the TF. The resolution is around ~500 bp as a result of the sonication step.
In motif discovery, we are given a set of sequences that we suspect harbor binding sites for a given transcription factor. A typical scenario is data coming from expression experiments, in which we wish to analyze the promoter region of a bunch of genes that are up- or down-regulated under some condition. The goal of motif discovery is to detect the transcription factor binding motif (i.e. the sequence “pattern” bound by the TF), by assuming that it will be overrepresented in our sample of sequences. There are different strategies to accomplish this, but the standard approach uses expectation maximization (EM) and in particular Gibbs sampling or greedy search. Popular algorithms for motif discovery are MEME, Gibbs Motif Sampler or CONSENSUS. More recently, motif discovery algorithms that make use of phylogenetic foot-printing (the idea that TF-binding site will be conserved in the promoter sequences for the same gene in different species) have become available. These are not usually applied to complement experimental work, but can be used to provide a starting point for it. Popular algorithms include FootPrinter and PhyloGibbs.
The principle of ChIP-chip is simple. The first step is to cross-link the protein-DNA complex. This is done using a fixating agent, such as formaldehyde. The cross-linking can later be reversed with heat. Cross-linking kills the cell, giving a snapshot of the bound TF at a given time. The cell is then lysed, the DNA sheared by sonication and the chromatin[2] (TF-DNA complexes) is pulled down using an antibody (i.e. immunoprecipitated). If an antibody for the TF is available, then it is used; otherwise, the TF is tagged with an epitope targeted by commercially available antibodies (the latter option is cheaper, but runs the risk of altering the TF's functionality). Cross-linking is then reversed to free the bound DNA, which is then amplified, labeled with a fluorophore and dumped onto a DNA-array. The scanned array reveals the genomic regions bound by the TF. The resolution is around ~500 bp as a result of the sonication step.
In motif discovery, we are given a set of sequences that we suspect harbor binding sites for a given transcription factor. A typical scenario is data coming from expression experiments, in which we wish to analyze the promoter region of a bunch of genes that are up- or down-regulated under some condition. The goal of motif discovery is to detect the transcription factor binding motif (i.e. the sequence “pattern” bound by the TF), by assuming that it will be overrepresented in our sample of sequences. There are different strategies to accomplish this, but the standard approach uses expectation maximization (EM) and in particular Gibbs sampling or greedy search. Popular algorithms for motif discovery are MEME, Gibbs Motif Sampler or CONSENSUS. More recently, motif discovery algorithms that make use of phylogenetic foot-printing (the idea that TF-binding site will be conserved in the promoter sequences for the same gene in different species) have become available. These are not usually applied to complement experimental work, but can be used to provide a starting point for it. Popular algorithms include FootPrinter and PhyloGibbs.
The principle of ChIP-chip is simple. The first step is to cross-link the protein-DNA complex. This is done using a fixating agent, such as formaldehyde. The cross-linking can later be reversed with heat. Cross-linking kills the cell, giving a snapshot of the bound TF at a given time. The cell is then lysed, the DNA sheared by sonication and the chromatin[2] (TF-DNA complexes) is pulled down using an antibody (i.e. immunoprecipitated). If an antibody for the TF is available, then it is used; otherwise, the TF is tagged with an epitope targeted by commercially available antibodies (the latter option is cheaper, but runs the risk of altering the TF's functionality). Cross-linking is then reversed to free the bound DNA, which is then amplified, labeled with a fluorophore and dumped onto a DNA-array. The scanned array reveals the genomic regions bound by the TF. The resolution is around ~500 bp as a result of the sonication step.
In motif discovery, we are given a set of sequences that we suspect harbor binding sites for a given transcription factor. A typical scenario is data coming from expression experiments, in which we wish to analyze the promoter region of a bunch of genes that are up- or down-regulated under some condition. The goal of motif discovery is to detect the transcription factor binding motif (i.e. the sequence “pattern” bound by the TF), by assuming that it will be overrepresented in our sample of sequences. There are different strategies to accomplish this, but the standard approach uses expectation maximization (EM) and in particular Gibbs sampling or greedy search. Popular algorithms for motif discovery are MEME, Gibbs Motif Sampler or CONSENSUS. More recently, motif discovery algorithms that make use of phylogenetic foot-printing (the idea that TF-binding site will be conserved in the promoter sequences for the same gene in different species) have become available. These are not usually applied to complement experimental work, but can be used to provide a starting point for it. Popular algorithms include FootPrinter and PhyloGibbs.
The principle of ChIP-chip is simple. The first step is to cross-link the protein-DNA complex. This is done using a fixating agent, such as formaldehyde. The cross-linking can later be reversed with heat. Cross-linking kills the cell, giving a snapshot of the bound TF at a given time. The cell is then lysed, the DNA sheared by sonication and the chromatin[2] (TF-DNA complexes) is pulled down using an antibody (i.e. immunoprecipitated). If an antibody for the TF is available, then it is used; otherwise, the TF is tagged with an epitope targeted by commercially available antibodies (the latter option is cheaper, but runs the risk of altering the TF's functionality). Cross-linking is then reversed to free the bound DNA, which is then amplified, labeled with a fluorophore and dumped onto a DNA-array. The scanned array reveals the genomic regions bound by the TF. The resolution is around ~500 bp as a result of the sonication step.
Electro-mobility shift-assays (or gel retardation assays) are a standard way of assessing TF-binding. A fragment of DNA of interest is amplified and labeled with a fluorophore. The fragment is left to incubate in a solution containing abundant TF and non-specific DNA (e.g. randomly cleaved DNA from salmon sperm, of all things) and then a gel is run with the incubated sample and a control (sample that has not been in contact with the TF). If the TF has bound the sample, the complex will migrate more slowly than unbound DNA through the gel, and this retarded band can be used as evidence of binding. The unspecific DNA ensures that the binding is specific to the fragment of interest and that any non-specific DNA-binding proteins left-over in the TF purification will bind there, instead of on the fragment of interest. EMSAs are typically carried out in a bunch of fragments, shown as multiple double (control+experiment) lanes in a wide picture. Certain additional controls are run in at least one of the fragments to ascertain specificity. In the most basic of these, specific competitor (the fragment of interest or a known positive control, unlabelled) is added to the reaction. This should sequester the TF and hence make the retardation band disappear, proving that the binding is indeed specific
In motif discovery, we are given a set of sequences that we suspect harbor binding sites for a given transcription factor. A typical scenario is data coming from expression experiments, in which we wish to analyze the promoter region of a bunch of genes that are up- or down-regulated under some condition. The goal of motif discovery is to detect the transcription factor binding motif (i.e. the sequence “pattern” bound by the TF), by assuming that it will be overrepresented in our sample of sequences. There are different strategies to accomplish this, but the standard approach uses expectation maximization (EM) and in particular Gibbs sampling or greedy search. Popular algorithms for motif discovery are MEME, Gibbs Motif Sampler or CONSENSUS. More recently, motif discovery algorithms that make use of phylogenetic foot-printing (the idea that TF-binding site will be conserved in the promoter sequences for the same gene in different species) have become available. These are not usually applied to complement experimental work, but can be used to provide a starting point for it. Popular algorithms include FootPrinter and PhyloGibbs.
The principle of ChIP-chip is simple. The first step is to cross-link the protein-DNA complex. This is done using a fixating agent, such as formaldehyde. The cross-linking can later be reversed with heat. Cross-linking kills the cell, giving a snapshot of the bound TF at a given time. The cell is then lysed, the DNA sheared by sonication and the chromatin[2] (TF-DNA complexes) is pulled down using an antibody (i.e. immunoprecipitated). If an antibody for the TF is available, then it is used; otherwise, the TF is tagged with an epitope targeted by commercially available antibodies (the latter option is cheaper, but runs the risk of altering the TF's functionality). Cross-linking is then reversed to free the bound DNA, which is then amplified, labeled with a fluorophore and dumped onto a DNA-array. The scanned array reveals the genomic regions bound by the TF. The resolution is around ~500 bp as a result of the sonication step.
In motif discovery, we are given a set of sequences that we suspect harbor binding sites for a given transcription factor. A typical scenario is data coming from expression experiments, in which we wish to analyze the promoter region of a bunch of genes that are up- or down-regulated under some condition. The goal of motif discovery is to detect the transcription factor binding motif (i.e. the sequence “pattern” bound by the TF), by assuming that it will be overrepresented in our sample of sequences. There are different strategies to accomplish this, but the standard approach uses expectation maximization (EM) and in particular Gibbs sampling or greedy search. Popular algorithms for motif discovery are MEME, Gibbs Motif Sampler or CONSENSUS. More recently, motif discovery algorithms that make use of phylogenetic foot-printing (the idea that TF-binding site will be conserved in the promoter sequences for the same gene in different species) have become available. These are not usually applied to complement experimental work, but can be used to provide a starting point for it. Popular algorithms include FootPrinter and PhyloGibbs.
The principle of ChIP-chip is simple. The first step is to cross-link the protein-DNA complex. This is done using a fixating agent, such as formaldehyde. The cross-linking can later be reversed with heat. Cross-linking kills the cell, giving a snapshot of the bound TF at a given time. The cell is then lysed, the DNA sheared by sonication and the chromatin[2] (TF-DNA complexes) is pulled down using an antibody (i.e. immunoprecipitated). If an antibody for the TF is available, then it is used; otherwise, the TF is tagged with an epitope targeted by commercially available antibodies (the latter option is cheaper, but runs the risk of altering the TF's functionality). Cross-linking is then reversed to free the bound DNA, which is then amplified, labeled with a fluorophore and dumped onto a DNA-array. The scanned array reveals the genomic regions bound by the TF. The resolution is around ~500 bp as a result of the sonication step.
In motif discovery, we are given a set of sequences that we suspect harbor binding sites for a given transcription factor. A typical scenario is data coming from expression experiments, in which we wish to analyze the promoter region of a bunch of genes that are up- or down-regulated under some condition. The goal of motif discovery is to detect the transcription factor binding motif (i.e. the sequence “pattern” bound by the TF), by assuming that it will be overrepresented in our sample of sequences. There are different strategies to accomplish this, but the standard approach uses expectation maximization (EM) and in particular Gibbs sampling or greedy search. Popular algorithms for motif discovery are MEME, Gibbs Motif Sampler or CONSENSUS. More recently, motif discovery algorithms that make use of phylogenetic foot-printing (the idea that TF-binding site will be conserved in the promoter sequences for the same gene in different species) have become available. These are not usually applied to complement experimental work, but can be used to provide a starting point for it. Popular algorithms include FootPrinter and PhyloGibbs.
The principle of ChIP-chip is simple. The first step is to cross-link the protein-DNA complex. This is done using a fixating agent, such as formaldehyde. The cross-linking can later be reversed with heat. Cross-linking kills the cell, giving a snapshot of the bound TF at a given time. The cell is then lysed, the DNA sheared by sonication and the chromatin[2] (TF-DNA complexes) is pulled down using an antibody (i.e. immunoprecipitated). If an antibody for the TF is available, then it is used; otherwise, the TF is tagged with an epitope targeted by commercially available antibodies (the latter option is cheaper, but runs the risk of altering the TF's functionality). Cross-linking is then reversed to free the bound DNA, which is then amplified, labeled with a fluorophore and dumped onto a DNA-array. The scanned array reveals the genomic regions bound by the TF. The resolution is around ~500 bp as a result of the sonication step.
In motif discovery, we are given a set of sequences that we suspect harbor binding sites for a given transcription factor. A typical scenario is data coming from expression experiments, in which we wish to analyze the promoter region of a bunch of genes that are up- or down-regulated under some condition. The goal of motif discovery is to detect the transcription factor binding motif (i.e. the sequence “pattern” bound by the TF), by assuming that it will be overrepresented in our sample of sequences. There are different strategies to accomplish this, but the standard approach uses expectation maximization (EM) and in particular Gibbs sampling or greedy search. Popular algorithms for motif discovery are MEME, Gibbs Motif Sampler or CONSENSUS. More recently, motif discovery algorithms that make use of phylogenetic foot-printing (the idea that TF-binding site will be conserved in the promoter sequences for the same gene in different species) have become available. These are not usually applied to complement experimental work, but can be used to provide a starting point for it. Popular algorithms include FootPrinter and PhyloGibbs.
The principle of ChIP-chip is simple. The first step is to cross-link the protein-DNA complex. This is done using a fixating agent, such as formaldehyde. The cross-linking can later be reversed with heat. Cross-linking kills the cell, giving a snapshot of the bound TF at a given time. The cell is then lysed, the DNA sheared by sonication and the chromatin[2] (TF-DNA complexes) is pulled down using an antibody (i.e. immunoprecipitated). If an antibody for the TF is available, then it is used; otherwise, the TF is tagged with an epitope targeted by commercially available antibodies (the latter option is cheaper, but runs the risk of altering the TF's functionality). Cross-linking is then reversed to free the bound DNA, which is then amplified, labeled with a fluorophore and dumped onto a DNA-array. The scanned array reveals the genomic regions bound by the TF. The resolution is around ~500 bp as a result of the sonication step.
In motif discovery, we are given a set of sequences that we suspect harbor binding sites for a given transcription factor. A typical scenario is data coming from expression experiments, in which we wish to analyze the promoter region of a bunch of genes that are up- or down-regulated under some condition. The goal of motif discovery is to detect the transcription factor binding motif (i.e. the sequence “pattern” bound by the TF), by assuming that it will be overrepresented in our sample of sequences. There are different strategies to accomplish this, but the standard approach uses expectation maximization (EM) and in particular Gibbs sampling or greedy search. Popular algorithms for motif discovery are MEME, Gibbs Motif Sampler or CONSENSUS. More recently, motif discovery algorithms that make use of phylogenetic foot-printing (the idea that TF-binding site will be conserved in the promoter sequences for the same gene in different species) have become available. These are not usually applied to complement experimental work, but can be used to provide a starting point for it. Popular algorithms include FootPrinter and PhyloGibbs.
The principle of ChIP-chip is simple. The first step is to cross-link the protein-DNA complex. This is done using a fixating agent, such as formaldehyde. The cross-linking can later be reversed with heat. Cross-linking kills the cell, giving a snapshot of the bound TF at a given time. The cell is then lysed, the DNA sheared by sonication and the chromatin[2] (TF-DNA complexes) is pulled down using an antibody (i.e. immunoprecipitated). If an antibody for the TF is available, then it is used; otherwise, the TF is tagged with an epitope targeted by commercially available antibodies (the latter option is cheaper, but runs the risk of altering the TF's functionality). Cross-linking is then reversed to free the bound DNA, which is then amplified, labeled with a fluorophore and dumped onto a DNA-array. The scanned array reveals the genomic regions bound by the TF. The resolution is around ~500 bp as a result of the sonication step.
In motif discovery, we are given a set of sequences that we suspect harbor binding sites for a given transcription factor. A typical scenario is data coming from expression experiments, in which we wish to analyze the promoter region of a bunch of genes that are up- or down-regulated under some condition. The goal of motif discovery is to detect the transcription factor binding motif (i.e. the sequence “pattern” bound by the TF), by assuming that it will be overrepresented in our sample of sequences. There are different strategies to accomplish this, but the standard approach uses expectation maximization (EM) and in particular Gibbs sampling or greedy search. Popular algorithms for motif discovery are MEME, Gibbs Motif Sampler or CONSENSUS. More recently, motif discovery algorithms that make use of phylogenetic foot-printing (the idea that TF-binding site will be conserved in the promoter sequences for the same gene in different species) have become available. These are not usually applied to complement experimental work, but can be used to provide a starting point for it. Popular algorithms include FootPrinter and PhyloGibbs.
The principle of ChIP-chip is simple. The first step is to cross-link the protein-DNA complex. This is done using a fixating agent, such as formaldehyde. The cross-linking can later be reversed with heat. Cross-linking kills the cell, giving a snapshot of the bound TF at a given time. The cell is then lysed, the DNA sheared by sonication and the chromatin[2] (TF-DNA complexes) is pulled down using an antibody (i.e. immunoprecipitated). If an antibody for the TF is available, then it is used; otherwise, the TF is tagged with an epitope targeted by commercially available antibodies (the latter option is cheaper, but runs the risk of altering the TF's functionality). Cross-linking is then reversed to free the bound DNA, which is then amplified, labeled with a fluorophore and dumped onto a DNA-array. The scanned array reveals the genomic regions bound by the TF. The resolution is around ~500 bp as a result of the sonication step.
In motif discovery, we are given a set of sequences that we suspect harbor binding sites for a given transcription factor. A typical scenario is data coming from expression experiments, in which we wish to analyze the promoter region of a bunch of genes that are up- or down-regulated under some condition. The goal of motif discovery is to detect the transcription factor binding motif (i.e. the sequence “pattern” bound by the TF), by assuming that it will be overrepresented in our sample of sequences. There are different strategies to accomplish this, but the standard approach uses expectation maximization (EM) and in particular Gibbs sampling or greedy search. Popular algorithms for motif discovery are MEME, Gibbs Motif Sampler or CONSENSUS. More recently, motif discovery algorithms that make use of phylogenetic foot-printing (the idea that TF-binding site will be conserved in the promoter sequences for the same gene in different species) have become available. These are not usually applied to complement experimental work, but can be used to provide a starting point for it. Popular algorithms include FootPrinter and PhyloGibbs.
The principle of ChIP-chip is simple. The first step is to cross-link the protein-DNA complex. This is done using a fixating agent, such as formaldehyde. The cross-linking can later be reversed with heat. Cross-linking kills the cell, giving a snapshot of the bound TF at a given time. The cell is then lysed, the DNA sheared by sonication and the chromatin[2] (TF-DNA complexes) is pulled down using an antibody (i.e. immunoprecipitated). If an antibody for the TF is available, then it is used; otherwise, the TF is tagged with an epitope targeted by commercially available antibodies (the latter option is cheaper, but runs the risk of altering the TF's functionality). Cross-linking is then reversed to free the bound DNA, which is then amplified, labeled with a fluorophore and dumped onto a DNA-array. The scanned array reveals the genomic regions bound by the TF. The resolution is around ~500 bp as a result of the sonication step.
In motif discovery, we are given a set of sequences that we suspect harbor binding sites for a given transcription factor. A typical scenario is data coming from expression experiments, in which we wish to analyze the promoter region of a bunch of genes that are up- or down-regulated under some condition. The goal of motif discovery is to detect the transcription factor binding motif (i.e. the sequence “pattern” bound by the TF), by assuming that it will be overrepresented in our sample of sequences. There are different strategies to accomplish this, but the standard approach uses expectation maximization (EM) and in particular Gibbs sampling or greedy search. Popular algorithms for motif discovery are MEME, Gibbs Motif Sampler or CONSENSUS. More recently, motif discovery algorithms that make use of phylogenetic foot-printing (the idea that TF-binding site will be conserved in the promoter sequences for the same gene in different species) have become available. These are not usually applied to complement experimental work, but can be used to provide a starting point for it. Popular algorithms include FootPrinter and PhyloGibbs.
The principle of ChIP-chip is simple. The first step is to cross-link the protein-DNA complex. This is done using a fixating agent, such as formaldehyde. The cross-linking can later be reversed with heat. Cross-linking kills the cell, giving a snapshot of the bound TF at a given time. The cell is then lysed, the DNA sheared by sonication and the chromatin[2] (TF-DNA complexes) is pulled down using an antibody (i.e. immunoprecipitated). If an antibody for the TF is available, then it is used; otherwise, the TF is tagged with an epitope targeted by commercially available antibodies (the latter option is cheaper, but runs the risk of altering the TF's functionality). Cross-linking is then reversed to free the bound DNA, which is then amplified, labeled with a fluorophore and dumped onto a DNA-array. The scanned array reveals the genomic regions bound by the TF. The resolution is around ~500 bp as a result of the sonication step.
In motif discovery, we are given a set of sequences that we suspect harbor binding sites for a given transcription factor. A typical scenario is data coming from expression experiments, in which we wish to analyze the promoter region of a bunch of genes that are up- or down-regulated under some condition. The goal of motif discovery is to detect the transcription factor binding motif (i.e. the sequence “pattern” bound by the TF), by assuming that it will be overrepresented in our sample of sequences. There are different strategies to accomplish this, but the standard approach uses expectation maximization (EM) and in particular Gibbs sampling or greedy search. Popular algorithms for motif discovery are MEME, Gibbs Motif Sampler or CONSENSUS. More recently, motif discovery algorithms that make use of phylogenetic foot-printing (the idea that TF-binding site will be conserved in the promoter sequences for the same gene in different species) have become available. These are not usually applied to complement experimental work, but can be used to provide a starting point for it. Popular algorithms include FootPrinter and PhyloGibbs.
The principle of ChIP-chip is simple. The first step is to cross-link the protein-DNA complex. This is done using a fixating agent, such as formaldehyde. The cross-linking can later be reversed with heat. Cross-linking kills the cell, giving a snapshot of the bound TF at a given time. The cell is then lysed, the DNA sheared by sonication and the chromatin[2] (TF-DNA complexes) is pulled down using an antibody (i.e. immunoprecipitated). If an antibody for the TF is available, then it is used; otherwise, the TF is tagged with an epitope targeted by commercially available antibodies (the latter option is cheaper, but runs the risk of altering the TF's functionality). Cross-linking is then reversed to free the bound DNA, which is then amplified, labeled with a fluorophore and dumped onto a DNA-array. The scanned array reveals the genomic regions bound by the TF. The resolution is around ~500 bp as a result of the sonication step.
In motif discovery, we are given a set of sequences that we suspect harbor binding sites for a given transcription factor. A typical scenario is data coming from expression experiments, in which we wish to analyze the promoter region of a bunch of genes that are up- or down-regulated under some condition. The goal of motif discovery is to detect the transcription factor binding motif (i.e. the sequence “pattern” bound by the TF), by assuming that it will be overrepresented in our sample of sequences. There are different strategies to accomplish this, but the standard approach uses expectation maximization (EM) and in particular Gibbs sampling or greedy search. Popular algorithms for motif discovery are MEME, Gibbs Motif Sampler or CONSENSUS. More recently, motif discovery algorithms that make use of phylogenetic foot-printing (the idea that TF-binding site will be conserved in the promoter sequences for the same gene in different species) have become available. These are not usually applied to complement experimental work, but can be used to provide a starting point for it. Popular algorithms include FootPrinter and PhyloGibbs.
The principle of ChIP-chip is simple. The first step is to cross-link the protein-DNA complex. This is done using a fixating agent, such as formaldehyde. The cross-linking can later be reversed with heat. Cross-linking kills the cell, giving a snapshot of the bound TF at a given time. The cell is then lysed, the DNA sheared by sonication and the chromatin[2] (TF-DNA complexes) is pulled down using an antibody (i.e. immunoprecipitated). If an antibody for the TF is available, then it is used; otherwise, the TF is tagged with an epitope targeted by commercially available antibodies (the latter option is cheaper, but runs the risk of altering the TF's functionality). Cross-linking is then reversed to free the bound DNA, which is then amplified, labeled with a fluorophore and dumped onto a DNA-array. The scanned array reveals the genomic regions bound by the TF. The resolution is around ~500 bp as a result of the sonication step.
In motif discovery, we are given a set of sequences that we suspect harbor binding sites for a given transcription factor. A typical scenario is data coming from expression experiments, in which we wish to analyze the promoter region of a bunch of genes that are up- or down-regulated under some condition. The goal of motif discovery is to detect the transcription factor binding motif (i.e. the sequence “pattern” bound by the TF), by assuming that it will be overrepresented in our sample of sequences. There are different strategies to accomplish this, but the standard approach uses expectation maximization (EM) and in particular Gibbs sampling or greedy search. Popular algorithms for motif discovery are MEME, Gibbs Motif Sampler or CONSENSUS. More recently, motif discovery algorithms that make use of phylogenetic foot-printing (the idea that TF-binding site will be conserved in the promoter sequences for the same gene in different species) have become available. These are not usually applied to complement experimental work, but can be used to provide a starting point for it. Popular algorithms include FootPrinter and PhyloGibbs.
The principle of ChIP-chip is simple. The first step is to cross-link the protein-DNA complex. This is done using a fixating agent, such as formaldehyde. The cross-linking can later be reversed with heat. Cross-linking kills the cell, giving a snapshot of the bound TF at a given time. The cell is then lysed, the DNA sheared by sonication and the chromatin[2] (TF-DNA complexes) is pulled down using an antibody (i.e. immunoprecipitated). If an antibody for the TF is available, then it is used; otherwise, the TF is tagged with an epitope targeted by commercially available antibodies (the latter option is cheaper, but runs the risk of altering the TF's functionality). Cross-linking is then reversed to free the bound DNA, which is then amplified, labeled with a fluorophore and dumped onto a DNA-array. The scanned array reveals the genomic regions bound by the TF. The resolution is around ~500 bp as a result of the sonication step.
In motif discovery, we are given a set of sequences that we suspect harbor binding sites for a given transcription factor. A typical scenario is data coming from expression experiments, in which we wish to analyze the promoter region of a bunch of genes that are up- or down-regulated under some condition. The goal of motif discovery is to detect the transcription factor binding motif (i.e. the sequence “pattern” bound by the TF), by assuming that it will be overrepresented in our sample of sequences. There are different strategies to accomplish this, but the standard approach uses expectation maximization (EM) and in particular Gibbs sampling or greedy search. Popular algorithms for motif discovery are MEME, Gibbs Motif Sampler or CONSENSUS. More recently, motif discovery algorithms that make use of phylogenetic foot-printing (the idea that TF-binding site will be conserved in the promoter sequences for the same gene in different species) have become available. These are not usually applied to complement experimental work, but can be used to provide a starting point for it. Popular algorithms include FootPrinter and PhyloGibbs.
The principle of ChIP-chip is simple. The first step is to cross-link the protein-DNA complex. This is done using a fixating agent, such as formaldehyde. The cross-linking can later be reversed with heat. Cross-linking kills the cell, giving a snapshot of the bound TF at a given time. The cell is then lysed, the DNA sheared by sonication and the chromatin[2] (TF-DNA complexes) is pulled down using an antibody (i.e. immunoprecipitated). If an antibody for the TF is available, then it is used; otherwise, the TF is tagged with an epitope targeted by commercially available antibodies (the latter option is cheaper, but runs the risk of altering the TF's functionality). Cross-linking is then reversed to free the bound DNA, which is then amplified, labeled with a fluorophore and dumped onto a DNA-array. The scanned array reveals the genomic regions bound by the TF. The resolution is around ~500 bp as a result of the sonication step.
In motif discovery, we are given a set of sequences that we suspect harbor binding sites for a given transcription factor. A typical scenario is data coming from expression experiments, in which we wish to analyze the promoter region of a bunch of genes that are up- or down-regulated under some condition. The goal of motif discovery is to detect the transcription factor binding motif (i.e. the sequence “pattern” bound by the TF), by assuming that it will be overrepresented in our sample of sequences. There are different strategies to accomplish this, but the standard approach uses expectation maximization (EM) and in particular Gibbs sampling or greedy search. Popular algorithms for motif discovery are MEME, Gibbs Motif Sampler or CONSENSUS. More recently, motif discovery algorithms that make use of phylogenetic foot-printing (the idea that TF-binding site will be conserved in the promoter sequences for the same gene in different species) have become available. These are not usually applied to complement experimental work, but can be used to provide a starting point for it. Popular algorithms include FootPrinter and PhyloGibbs.
The principle of ChIP-chip is simple. The first step is to cross-link the protein-DNA complex. This is done using a fixating agent, such as formaldehyde. The cross-linking can later be reversed with heat. Cross-linking kills the cell, giving a snapshot of the bound TF at a given time. The cell is then lysed, the DNA sheared by sonication and the chromatin[2] (TF-DNA complexes) is pulled down using an antibody (i.e. immunoprecipitated). If an antibody for the TF is available, then it is used; otherwise, the TF is tagged with an epitope targeted by commercially available antibodies (the latter option is cheaper, but runs the risk of altering the TF's functionality). Cross-linking is then reversed to free the bound DNA, which is then amplified, labeled with a fluorophore and dumped onto a DNA-array. The scanned array reveals the genomic regions bound by the TF. The resolution is around ~500 bp as a result of the sonication step.
In motif discovery, we are given a set of sequences that we suspect harbor binding sites for a given transcription factor. A typical scenario is data coming from expression experiments, in which we wish to analyze the promoter region of a bunch of genes that are up- or down-regulated under some condition. The goal of motif discovery is to detect the transcription factor binding motif (i.e. the sequence “pattern” bound by the TF), by assuming that it will be overrepresented in our sample of sequences. There are different strategies to accomplish this, but the standard approach uses expectation maximization (EM) and in particular Gibbs sampling or greedy search. Popular algorithms for motif discovery are MEME, Gibbs Motif Sampler or CONSENSUS. More recently, motif discovery algorithms that make use of phylogenetic foot-printing (the idea that TF-binding site will be conserved in the promoter sequences for the same gene in different species) have become available. These are not usually applied to complement experimental work, but can be used to provide a starting point for it. Popular algorithms include FootPrinter and PhyloGibbs.
The principle of ChIP-chip is simple. The first step is to cross-link the protein-DNA complex. This is done using a fixating agent, such as formaldehyde. The cross-linking can later be reversed with heat. Cross-linking kills the cell, giving a snapshot of the bound TF at a given time. The cell is then lysed, the DNA sheared by sonication and the chromatin[2] (TF-DNA complexes) is pulled down using an antibody (i.e. immunoprecipitated). If an antibody for the TF is available, then it is used; otherwise, the TF is tagged with an epitope targeted by commercially available antibodies (the latter option is cheaper, but runs the risk of altering the TF's functionality). Cross-linking is then reversed to free the bound DNA, which is then amplified, labeled with a fluorophore and dumped onto a DNA-array. The scanned array reveals the genomic regions bound by the TF. The resolution is around ~500 bp as a result of the sonication step.
In motif discovery, we are given a set of sequences that we suspect harbor binding sites for a given transcription factor. A typical scenario is data coming from expression experiments, in which we wish to analyze the promoter region of a bunch of genes that are up- or down-regulated under some condition. The goal of motif discovery is to detect the transcription factor binding motif (i.e. the sequence “pattern” bound by the TF), by assuming that it will be overrepresented in our sample of sequences. There are different strategies to accomplish this, but the standard approach uses expectation maximization (EM) and in particular Gibbs sampling or greedy search. Popular algorithms for motif discovery are MEME, Gibbs Motif Sampler or CONSENSUS. More recently, motif discovery algorithms that make use of phylogenetic foot-printing (the idea that TF-binding site will be conserved in the promoter sequences for the same gene in different species) have become available. These are not usually applied to complement experimental work, but can be used to provide a starting point for it. Popular algorithms include FootPrinter and PhyloGibbs.
The principle of ChIP-chip is simple. The first step is to cross-link the protein-DNA complex. This is done using a fixating agent, such as formaldehyde. The cross-linking can later be reversed with heat. Cross-linking kills the cell, giving a snapshot of the bound TF at a given time. The cell is then lysed, the DNA sheared by sonication and the chromatin[2] (TF-DNA complexes) is pulled down using an antibody (i.e. immunoprecipitated). If an antibody for the TF is available, then it is used; otherwise, the TF is tagged with an epitope targeted by commercially available antibodies (the latter option is cheaper, but runs the risk of altering the TF's functionality). Cross-linking is then reversed to free the bound DNA, which is then amplified, labeled with a fluorophore and dumped onto a DNA-array. The scanned array reveals the genomic regions bound by the TF. The resolution is around ~500 bp as a result of the sonication step.
In motif discovery, we are given a set of sequences that we suspect harbor binding sites for a given transcription factor. A typical scenario is data coming from expression experiments, in which we wish to analyze the promoter region of a bunch of genes that are up- or down-regulated under some condition. The goal of motif discovery is to detect the transcription factor binding motif (i.e. the sequence “pattern” bound by the TF), by assuming that it will be overrepresented in our sample of sequences. There are different strategies to accomplish this, but the standard approach uses expectation maximization (EM) and in particular Gibbs sampling or greedy search. Popular algorithms for motif discovery are MEME, Gibbs Motif Sampler or CONSENSUS. More recently, motif discovery algorithms that make use of phylogenetic foot-printing (the idea that TF-binding site will be conserved in the promoter sequences for the same gene in different species) have become available. These are not usually applied to complement experimental work, but can be used to provide a starting point for it. Popular algorithms include FootPrinter and PhyloGibbs.
The principle of ChIP-chip is simple. The first step is to cross-link the protein-DNA complex. This is done using a fixating agent, such as formaldehyde. The cross-linking can later be reversed with heat. Cross-linking kills the cell, giving a snapshot of the bound TF at a given time. The cell is then lysed, the DNA sheared by sonication and the chromatin[2] (TF-DNA complexes) is pulled down using an antibody (i.e. immunoprecipitated). If an antibody for the TF is available, then it is used; otherwise, the TF is tagged with an epitope targeted by commercially available antibodies (the latter option is cheaper, but runs the risk of altering the TF's functionality). Cross-linking is then reversed to free the bound DNA, which is then amplified, labeled with a fluorophore and dumped onto a DNA-array. The scanned array reveals the genomic regions bound by the TF. The resolution is around ~500 bp as a result of the sonication step.
In motif discovery, we are given a set of sequences that we suspect harbor binding sites for a given transcription factor. A typical scenario is data coming from expression experiments, in which we wish to analyze the promoter region of a bunch of genes that are up- or down-regulated under some condition. The goal of motif discovery is to detect the transcription factor binding motif (i.e. the sequence “pattern” bound by the TF), by assuming that it will be overrepresented in our sample of sequences. There are different strategies to accomplish this, but the standard approach uses expectation maximization (EM) and in particular Gibbs sampling or greedy search. Popular algorithms for motif discovery are MEME, Gibbs Motif Sampler or CONSENSUS. More recently, motif discovery algorithms that make use of phylogenetic foot-printing (the idea that TF-binding site will be conserved in the promoter sequences for the same gene in different species) have become available. These are not usually applied to complement experimental work, but can be used to provide a starting point for it. Popular algorithms include FootPrinter and PhyloGibbs.
The principle of ChIP-chip is simple. The first step is to cross-link the protein-DNA complex. This is done using a fixating agent, such as formaldehyde. The cross-linking can later be reversed with heat. Cross-linking kills the cell, giving a snapshot of the bound TF at a given time. The cell is then lysed, the DNA sheared by sonication and the chromatin[2] (TF-DNA complexes) is pulled down using an antibody (i.e. immunoprecipitated). If an antibody for the TF is available, then it is used; otherwise, the TF is tagged with an epitope targeted by commercially available antibodies (the latter option is cheaper, but runs the risk of altering the TF's functionality). Cross-linking is then reversed to free the bound DNA, which is then amplified, labeled with a fluorophore and dumped onto a DNA-array. The scanned array reveals the genomic regions bound by the TF. The resolution is around ~500 bp as a result of the sonication step.
In motif discovery, we are given a set of sequences that we suspect harbor binding sites for a given transcription factor. A typical scenario is data coming from expression experiments, in which we wish to analyze the promoter region of a bunch of genes that are up- or down-regulated under some condition. The goal of motif discovery is to detect the transcription factor binding motif (i.e. the sequence “pattern” bound by the TF), by assuming that it will be overrepresented in our sample of sequences. There are different strategies to accomplish this, but the standard approach uses expectation maximization (EM) and in particular Gibbs sampling or greedy search. Popular algorithms for motif discovery are MEME, Gibbs Motif Sampler or CONSENSUS. More recently, motif discovery algorithms that make use of phylogenetic foot-printing (the idea that TF-binding site will be conserved in the promoter sequences for the same gene in different species) have become available. These are not usually applied to complement experimental work, but can be used to provide a starting point for it. Popular algorithms include FootPrinter and PhyloGibbs.
The principle of ChIP-chip is simple. The first step is to cross-link the protein-DNA complex. This is done using a fixating agent, such as formaldehyde. The cross-linking can later be reversed with heat. Cross-linking kills the cell, giving a snapshot of the bound TF at a given time. The cell is then lysed, the DNA sheared by sonication and the chromatin[2] (TF-DNA complexes) is pulled down using an antibody (i.e. immunoprecipitated). If an antibody for the TF is available, then it is used; otherwise, the TF is tagged with an epitope targeted by commercially available antibodies (the latter option is cheaper, but runs the risk of altering the TF's functionality). Cross-linking is then reversed to free the bound DNA, which is then amplified, labeled with a fluorophore and dumped onto a DNA-array. The scanned array reveals the genomic regions bound by the TF. The resolution is around ~500 bp as a result of the sonication step.
In motif discovery, we are given a set of sequences that we suspect harbor binding sites for a given transcription factor. A typical scenario is data coming from expression experiments, in which we wish to analyze the promoter region of a bunch of genes that are up- or down-regulated under some condition. The goal of motif discovery is to detect the transcription factor binding motif (i.e. the sequence “pattern” bound by the TF), by assuming that it will be overrepresented in our sample of sequences. There are different strategies to accomplish this, but the standard approach uses expectation maximization (EM) and in particular Gibbs sampling or greedy search. Popular algorithms for motif discovery are MEME, Gibbs Motif Sampler or CONSENSUS. More recently, motif discovery algorithms that make use of phylogenetic foot-printing (the idea that TF-binding site will be conserved in the promoter sequences for the same gene in different species) have become available. These are not usually applied to complement experimental work, but can be used to provide a starting point for it. Popular algorithms include FootPrinter and PhyloGibbs.
The principle of ChIP-chip is simple. The first step is to cross-link the protein-DNA complex. This is done using a fixating agent, such as formaldehyde. The cross-linking can later be reversed with heat. Cross-linking kills the cell, giving a snapshot of the bound TF at a given time. The cell is then lysed, the DNA sheared by sonication and the chromatin[2] (TF-DNA complexes) is pulled down using an antibody (i.e. immunoprecipitated). If an antibody for the TF is available, then it is used; otherwise, the TF is tagged with an epitope targeted by commercially available antibodies (the latter option is cheaper, but runs the risk of altering the TF's functionality). Cross-linking is then reversed to free the bound DNA, which is then amplified, labeled with a fluorophore and dumped onto a DNA-array. The scanned array reveals the genomic regions bound by the TF. The resolution is around ~500 bp as a result of the sonication step.
In motif discovery, we are given a set of sequences that we suspect harbor binding sites for a given transcription factor. A typical scenario is data coming from expression experiments, in which we wish to analyze the promoter region of a bunch of genes that are up- or down-regulated under some condition. The goal of motif discovery is to detect the transcription factor binding motif (i.e. the sequence “pattern” bound by the TF), by assuming that it will be overrepresented in our sample of sequences. There are different strategies to accomplish this, but the standard approach uses expectation maximization (EM) and in particular Gibbs sampling or greedy search. Popular algorithms for motif discovery are MEME, Gibbs Motif Sampler or CONSENSUS. More recently, motif discovery algorithms that make use of phylogenetic foot-printing (the idea that TF-binding site will be conserved in the promoter sequences for the same gene in different species) have become available. These are not usually applied to complement experimental work, but can be used to provide a starting point for it. Popular algorithms include FootPrinter and PhyloGibbs.
The principle of ChIP-chip is simple. The first step is to cross-link the protein-DNA complex. This is done using a fixating agent, such as formaldehyde. The cross-linking can later be reversed with heat. Cross-linking kills the cell, giving a snapshot of the bound TF at a given time. The cell is then lysed, the DNA sheared by sonication and the chromatin[2] (TF-DNA complexes) is pulled down using an antibody (i.e. immunoprecipitated). If an antibody for the TF is available, then it is used; otherwise, the TF is tagged with an epitope targeted by commercially available antibodies (the latter option is cheaper, but runs the risk of altering the TF's functionality). Cross-linking is then reversed to free the bound DNA, which is then amplified, labeled with a fluorophore and dumped onto a DNA-array. The scanned array reveals the genomic regions bound by the TF. The resolution is around ~500 bp as a result of the sonication step.
In motif discovery, we are given a set of sequences that we suspect harbor binding sites for a given transcription factor. A typical scenario is data coming from expression experiments, in which we wish to analyze the promoter region of a bunch of genes that are up- or down-regulated under some condition. The goal of motif discovery is to detect the transcription factor binding motif (i.e. the sequence “pattern” bound by the TF), by assuming that it will be overrepresented in our sample of sequences. There are different strategies to accomplish this, but the standard approach uses expectation maximization (EM) and in particular Gibbs sampling or greedy search. Popular algorithms for motif discovery are MEME, Gibbs Motif Sampler or CONSENSUS. More recently, motif discovery algorithms that make use of phylogenetic foot-printing (the idea that TF-binding site will be conserved in the promoter sequences for the same gene in different species) have become available. These are not usually applied to complement experimental work, but can be used to provide a starting point for it. Popular algorithms include FootPrinter and PhyloGibbs.
The principle of ChIP-chip is simple. The first step is to cross-link the protein-DNA complex. This is done using a fixating agent, such as formaldehyde. The cross-linking can later be reversed with heat. Cross-linking kills the cell, giving a snapshot of the bound TF at a given time. The cell is then lysed, the DNA sheared by sonication and the chromatin[2] (TF-DNA complexes) is pulled down using an antibody (i.e. immunoprecipitated). If an antibody for the TF is available, then it is used; otherwise, the TF is tagged with an epitope targeted by commercially available antibodies (the latter option is cheaper, but runs the risk of altering the TF's functionality). Cross-linking is then reversed to free the bound DNA, which is then amplified, labeled with a fluorophore and dumped onto a DNA-array. The scanned array reveals the genomic regions bound by the TF. The resolution is around ~500 bp as a result of the sonication step.
In motif discovery, we are given a set of sequences that we suspect harbor binding sites for a given transcription factor. A typical scenario is data coming from expression experiments, in which we wish to analyze the promoter region of a bunch of genes that are up- or down-regulated under some condition. The goal of motif discovery is to detect the transcription factor binding motif (i.e. the sequence “pattern” bound by the TF), by assuming that it will be overrepresented in our sample of sequences. There are different strategies to accomplish this, but the standard approach uses expectation maximization (EM) and in particular Gibbs sampling or greedy search. Popular algorithms for motif discovery are MEME, Gibbs Motif Sampler or CONSENSUS. More recently, motif discovery algorithms that make use of phylogenetic foot-printing (the idea that TF-binding site will be conserved in the promoter sequences for the same gene in different species) have become available. These are not usually applied to complement experimental work, but can be used to provide a starting point for it. Popular algorithms include FootPrinter and PhyloGibbs.
The principle of ChIP-chip is simple. The first step is to cross-link the protein-DNA complex. This is done using a fixating agent, such as formaldehyde. The cross-linking can later be reversed with heat. Cross-linking kills the cell, giving a snapshot of the bound TF at a given time. The cell is then lysed, the DNA sheared by sonication and the chromatin[2] (TF-DNA complexes) is pulled down using an antibody (i.e. immunoprecipitated). If an antibody for the TF is available, then it is used; otherwise, the TF is tagged with an epitope targeted by commercially available antibodies (the latter option is cheaper, but runs the risk of altering the TF's functionality). Cross-linking is then reversed to free the bound DNA, which is then amplified, labeled with a fluorophore and dumped onto a DNA-array. The scanned array reveals the genomic regions bound by the TF. The resolution is around ~500 bp as a result of the sonication step.
In motif discovery, we are given a set of sequences that we suspect harbor binding sites for a given transcription factor. A typical scenario is data coming from expression experiments, in which we wish to analyze the promoter region of a bunch of genes that are up- or down-regulated under some condition. The goal of motif discovery is to detect the transcription factor binding motif (i.e. the sequence “pattern” bound by the TF), by assuming that it will be overrepresented in our sample of sequences. There are different strategies to accomplish this, but the standard approach uses expectation maximization (EM) and in particular Gibbs sampling or greedy search. Popular algorithms for motif discovery are MEME, Gibbs Motif Sampler or CONSENSUS. More recently, motif discovery algorithms that make use of phylogenetic foot-printing (the idea that TF-binding site will be conserved in the promoter sequences for the same gene in different species) have become available. These are not usually applied to complement experimental work, but can be used to provide a starting point for it. Popular algorithms include FootPrinter and PhyloGibbs.
The principle of ChIP-chip is simple. The first step is to cross-link the protein-DNA complex. This is done using a fixating agent, such as formaldehyde. The cross-linking can later be reversed with heat. Cross-linking kills the cell, giving a snapshot of the bound TF at a given time. The cell is then lysed, the DNA sheared by sonication and the chromatin[2] (TF-DNA complexes) is pulled down using an antibody (i.e. immunoprecipitated). If an antibody for the TF is available, then it is used; otherwise, the TF is tagged with an epitope targeted by commercially available antibodies (the latter option is cheaper, but runs the risk of altering the TF's functionality). Cross-linking is then reversed to free the bound DNA, which is then amplified, labeled with a fluorophore and dumped onto a DNA-array. The scanned array reveals the genomic regions bound by the TF. The resolution is around ~500 bp as a result of the sonication step.
In motif discovery, we are given a set of sequences that we suspect harbor binding sites for a given transcription factor. A typical scenario is data coming from expression experiments, in which we wish to analyze the promoter region of a bunch of genes that are up- or down-regulated under some condition. The goal of motif discovery is to detect the transcription factor binding motif (i.e. the sequence “pattern” bound by the TF), by assuming that it will be overrepresented in our sample of sequences. There are different strategies to accomplish this, but the standard approach uses expectation maximization (EM) and in particular Gibbs sampling or greedy search. Popular algorithms for motif discovery are MEME, Gibbs Motif Sampler or CONSENSUS. More recently, motif discovery algorithms that make use of phylogenetic foot-printing (the idea that TF-binding site will be conserved in the promoter sequences for the same gene in different species) have become available. These are not usually applied to complement experimental work, but can be used to provide a starting point for it. Popular algorithms include FootPrinter and PhyloGibbs.
The principle of ChIP-chip is simple. The first step is to cross-link the protein-DNA complex. This is done using a fixating agent, such as formaldehyde. The cross-linking can later be reversed with heat. Cross-linking kills the cell, giving a snapshot of the bound TF at a given time. The cell is then lysed, the DNA sheared by sonication and the chromatin[2] (TF-DNA complexes) is pulled down using an antibody (i.e. immunoprecipitated). If an antibody for the TF is available, then it is used; otherwise, the TF is tagged with an epitope targeted by commercially available antibodies (the latter option is cheaper, but runs the risk of altering the TF's functionality). Cross-linking is then reversed to free the bound DNA, which is then amplified, labeled with a fluorophore and dumped onto a DNA-array. The scanned array reveals the genomic regions bound by the TF. The resolution is around ~500 bp as a result of the sonication step.
In motif discovery, we are given a set of sequences that we suspect harbor binding sites for a given transcription factor. A typical scenario is data coming from expression experiments, in which we wish to analyze the promoter region of a bunch of genes that are up- or down-regulated under some condition. The goal of motif discovery is to detect the transcription factor binding motif (i.e. the sequence “pattern” bound by the TF), by assuming that it will be overrepresented in our sample of sequences. There are different strategies to accomplish this, but the standard approach uses expectation maximization (EM) and in particular Gibbs sampling or greedy search. Popular algorithms for motif discovery are MEME, Gibbs Motif Sampler or CONSENSUS. More recently, motif discovery algorithms that make use of phylogenetic foot-printing (the idea that TF-binding site will be conserved in the promoter sequences for the same gene in different species) have become available. These are not usually applied to complement experimental work, but can be used to provide a starting point for it. Popular algorithms include FootPrinter and PhyloGibbs.
The principle of ChIP-chip is simple. The first step is to cross-link the protein-DNA complex. This is done using a fixating agent, such as formaldehyde. The cross-linking can later be reversed with heat. Cross-linking kills the cell, giving a snapshot of the bound TF at a given time. The cell is then lysed, the DNA sheared by sonication and the chromatin[2] (TF-DNA complexes) is pulled down using an antibody (i.e. immunoprecipitated). If an antibody for the TF is available, then it is used; otherwise, the TF is tagged with an epitope targeted by commercially available antibodies (the latter option is cheaper, but runs the risk of altering the TF's functionality). Cross-linking is then reversed to free the bound DNA, which is then amplified, labeled with a fluorophore and dumped onto a DNA-array. The scanned array reveals the genomic regions bound by the TF. The resolution is around ~500 bp as a result of the sonication step.
In motif discovery, we are given a set of sequences that we suspect harbor binding sites for a given transcription factor. A typical scenario is data coming from expression experiments, in which we wish to analyze the promoter region of a bunch of genes that are up- or down-regulated under some condition. The goal of motif discovery is to detect the transcription factor binding motif (i.e. the sequence “pattern” bound by the TF), by assuming that it will be overrepresented in our sample of sequences. There are different strategies to accomplish this, but the standard approach uses expectation maximization (EM) and in particular Gibbs sampling or greedy search. Popular algorithms for motif discovery are MEME, Gibbs Motif Sampler or CONSENSUS. More recently, motif discovery algorithms that make use of phylogenetic foot-printing (the idea that TF-binding site will be conserved in the promoter sequences for the same gene in different species) have become available. These are not usually applied to complement experimental work, but can be used to provide a starting point for it. Popular algorithms include FootPrinter and PhyloGibbs.
The principle of ChIP-chip is simple. The first step is to cross-link the protein-DNA complex. This is done using a fixating agent, such as formaldehyde. The cross-linking can later be reversed with heat. Cross-linking kills the cell, giving a snapshot of the bound TF at a given time. The cell is then lysed, the DNA sheared by sonication and the chromatin[2] (TF-DNA complexes) is pulled down using an antibody (i.e. immunoprecipitated). If an antibody for the TF is available, then it is used; otherwise, the TF is tagged with an epitope targeted by commercially available antibodies (the latter option is cheaper, but runs the risk of altering the TF's functionality). Cross-linking is then reversed to free the bound DNA, which is then amplified, labeled with a fluorophore and dumped onto a DNA-array. The scanned array reveals the genomic regions bound by the TF. The resolution is around ~500 bp as a result of the sonication step.
In motif discovery, we are given a set of sequences that we suspect harbor binding sites for a given transcription factor. A typical scenario is data coming from expression experiments, in which we wish to analyze the promoter region of a bunch of genes that are up- or down-regulated under some condition. The goal of motif discovery is to detect the transcription factor binding motif (i.e. the sequence “pattern” bound by the TF), by assuming that it will be overrepresented in our sample of sequences. There are different strategies to accomplish this, but the standard approach uses expectation maximization (EM) and in particular Gibbs sampling or greedy search. Popular algorithms for motif discovery are MEME, Gibbs Motif Sampler or CONSENSUS. More recently, motif discovery algorithms that make use of phylogenetic foot-printing (the idea that TF-binding site will be conserved in the promoter sequences for the same gene in different species) have become available. These are not usually applied to complement experimental work, but can be used to provide a starting point for it. Popular algorithms include FootPrinter and PhyloGibbs.
The principle of ChIP-chip is simple. The first step is to cross-link the protein-DNA complex. This is done using a fixating agent, such as formaldehyde. The cross-linking can later be reversed with heat. Cross-linking kills the cell, giving a snapshot of the bound TF at a given time. The cell is then lysed, the DNA sheared by sonication and the chromatin[2] (TF-DNA complexes) is pulled down using an antibody (i.e. immunoprecipitated). If an antibody for the TF is available, then it is used; otherwise, the TF is tagged with an epitope targeted by commercially available antibodies (the latter option is cheaper, but runs the risk of altering the TF's functionality). Cross-linking is then reversed to free the bound DNA, which is then amplified, labeled with a fluorophore and dumped onto a DNA-array. The scanned array reveals the genomic regions bound by the TF. The resolution is around ~500 bp as a result of the sonication step.
In motif discovery, we are given a set of sequences that we suspect harbor binding sites for a given transcription factor. A typical scenario is data coming from expression experiments, in which we wish to analyze the promoter region of a bunch of genes that are up- or down-regulated under some condition. The goal of motif discovery is to detect the transcription factor binding motif (i.e. the sequence “pattern” bound by the TF), by assuming that it will be overrepresented in our sample of sequences. There are different strategies to accomplish this, but the standard approach uses expectation maximization (EM) and in particular Gibbs sampling or greedy search. Popular algorithms for motif discovery are MEME, Gibbs Motif Sampler or CONSENSUS. More recently, motif discovery algorithms that make use of phylogenetic foot-printing (the idea that TF-binding site will be conserved in the promoter sequences for the same gene in different species) have become available. These are not usually applied to complement experimental work, but can be used to provide a starting point for it. Popular algorithms include FootPrinter and PhyloGibbs.
The principle of ChIP-chip is simple. The first step is to cross-link the protein-DNA complex. This is done using a fixating agent, such as formaldehyde. The cross-linking can later be reversed with heat. Cross-linking kills the cell, giving a snapshot of the bound TF at a given time. The cell is then lysed, the DNA sheared by sonication and the chromatin[2] (TF-DNA complexes) is pulled down using an antibody (i.e. immunoprecipitated). If an antibody for the TF is available, then it is used; otherwise, the TF is tagged with an epitope targeted by commercially available antibodies (the latter option is cheaper, but runs the risk of altering the TF's functionality). Cross-linking is then reversed to free the bound DNA, which is then amplified, labeled with a fluorophore and dumped onto a DNA-array. The scanned array reveals the genomic regions bound by the TF. The resolution is around ~500 bp as a result of the sonication step.
In motif discovery, we are given a set of sequences that we suspect harbor binding sites for a given transcription factor. A typical scenario is data coming from expression experiments, in which we wish to analyze the promoter region of a bunch of genes that are up- or down-regulated under some condition. The goal of motif discovery is to detect the transcription factor binding motif (i.e. the sequence “pattern” bound by the TF), by assuming that it will be overrepresented in our sample of sequences. There are different strategies to accomplish this, but the standard approach uses expectation maximization (EM) and in particular Gibbs sampling or greedy search. Popular algorithms for motif discovery are MEME, Gibbs Motif Sampler or CONSENSUS. More recently, motif discovery algorithms that make use of phylogenetic foot-printing (the idea that TF-binding site will be conserved in the promoter sequences for the same gene in different species) have become available. These are not usually applied to complement experimental work, but can be used to provide a starting point for it. Popular algorithms include FootPrinter and PhyloGibbs.
The principle of ChIP-chip is simple. The first step is to cross-link the protein-DNA complex. This is done using a fixating agent, such as formaldehyde. The cross-linking can later be reversed with heat. Cross-linking kills the cell, giving a snapshot of the bound TF at a given time. The cell is then lysed, the DNA sheared by sonication and the chromatin[2] (TF-DNA complexes) is pulled down using an antibody (i.e. immunoprecipitated). If an antibody for the TF is available, then it is used; otherwise, the TF is tagged with an epitope targeted by commercially available antibodies (the latter option is cheaper, but runs the risk of altering the TF's functionality). Cross-linking is then reversed to free the bound DNA, which is then amplified, labeled with a fluorophore and dumped onto a DNA-array. The scanned array reveals the genomic regions bound by the TF. The resolution is around ~500 bp as a result of the sonication step.
In motif discovery, we are given a set of sequences that we suspect harbor binding sites for a given transcription factor. A typical scenario is data coming from expression experiments, in which we wish to analyze the promoter region of a bunch of genes that are up- or down-regulated under some condition. The goal of motif discovery is to detect the transcription factor binding motif (i.e. the sequence “pattern” bound by the TF), by assuming that it will be overrepresented in our sample of sequences. There are different strategies to accomplish this, but the standard approach uses expectation maximization (EM) and in particular Gibbs sampling or greedy search. Popular algorithms for motif discovery are MEME, Gibbs Motif Sampler or CONSENSUS. More recently, motif discovery algorithms that make use of phylogenetic foot-printing (the idea that TF-binding site will be conserved in the promoter sequences for the same gene in different species) have become available. These are not usually applied to complement experimental work, but can be used to provide a starting point for it. Popular algorithms include FootPrinter and PhyloGibbs.
The principle of ChIP-chip is simple. The first step is to cross-link the protein-DNA complex. This is done using a fixating agent, such as formaldehyde. The cross-linking can later be reversed with heat. Cross-linking kills the cell, giving a snapshot of the bound TF at a given time. The cell is then lysed, the DNA sheared by sonication and the chromatin[2] (TF-DNA complexes) is pulled down using an antibody (i.e. immunoprecipitated). If an antibody for the TF is available, then it is used; otherwise, the TF is tagged with an epitope targeted by commercially available antibodies (the latter option is cheaper, but runs the risk of altering the TF's functionality). Cross-linking is then reversed to free the bound DNA, which is then amplified, labeled with a fluorophore and dumped onto a DNA-array. The scanned array reveals the genomic regions bound by the TF. The resolution is around ~500 bp as a result of the sonication step.
In motif discovery, we are given a set of sequences that we suspect harbor binding sites for a given transcription factor. A typical scenario is data coming from expression experiments, in which we wish to analyze the promoter region of a bunch of genes that are up- or down-regulated under some condition. The goal of motif discovery is to detect the transcription factor binding motif (i.e. the sequence “pattern” bound by the TF), by assuming that it will be overrepresented in our sample of sequences. There are different strategies to accomplish this, but the standard approach uses expectation maximization (EM) and in particular Gibbs sampling or greedy search. Popular algorithms for motif discovery are MEME, Gibbs Motif Sampler or CONSENSUS. More recently, motif discovery algorithms that make use of phylogenetic foot-printing (the idea that TF-binding site will be conserved in the promoter sequences for the same gene in different species) have become available. These are not usually applied to complement experimental work, but can be used to provide a starting point for it. Popular algorithms include FootPrinter and PhyloGibbs.
The principle of ChIP-chip is simple. The first step is to cross-link the protein-DNA complex. This is done using a fixating agent, such as formaldehyde. The cross-linking can later be reversed with heat. Cross-linking kills the cell, giving a snapshot of the bound TF at a given time. The cell is then lysed, the DNA sheared by sonication and the chromatin[2] (TF-DNA complexes) is pulled down using an antibody (i.e. immunoprecipitated). If an antibody for the TF is available, then it is used; otherwise, the TF is tagged with an epitope targeted by commercially available antibodies (the latter option is cheaper, but runs the risk of altering the TF's functionality). Cross-linking is then reversed to free the bound DNA, which is then amplified, labeled with a fluorophore and dumped onto a DNA-array. The scanned array reveals the genomic regions bound by the TF. The resolution is around ~500 bp as a result of the sonication step.
In motif discovery, we are given a set of sequences that we suspect harbor binding sites for a given transcription factor. A typical scenario is data coming from expression experiments, in which we wish to analyze the promoter region of a bunch of genes that are up- or down-regulated under some condition. The goal of motif discovery is to detect the transcription factor binding motif (i.e. the sequence “pattern” bound by the TF), by assuming that it will be overrepresented in our sample of sequences. There are different strategies to accomplish this, but the standard approach uses expectation maximization (EM) and in particular Gibbs sampling or greedy search. Popular algorithms for motif discovery are MEME, Gibbs Motif Sampler or CONSENSUS. More recently, motif discovery algorithms that make use of phylogenetic foot-printing (the idea that TF-binding site will be conserved in the promoter sequences for the same gene in different species) have become available. These are not usually applied to complement experimental work, but can be used to provide a starting point for it. Popular algorithms include FootPrinter and PhyloGibbs.
The principle of ChIP-chip is simple. The first step is to cross-link the protein-DNA complex. This is done using a fixating agent, such as formaldehyde. The cross-linking can later be reversed with heat. Cross-linking kills the cell, giving a snapshot of the bound TF at a given time. The cell is then lysed, the DNA sheared by sonication and the chromatin[2] (TF-DNA complexes) is pulled down using an antibody (i.e. immunoprecipitated). If an antibody for the TF is available, then it is used; otherwise, the TF is tagged with an epitope targeted by commercially available antibodies (the latter option is cheaper, but runs the risk of altering the TF's functionality). Cross-linking is then reversed to free the bound DNA, which is then amplified, labeled with a fluorophore and dumped onto a DNA-array. The scanned array reveals the genomic regions bound by the TF. The resolution is around ~500 bp as a result of the sonication step.
In motif discovery, we are given a set of sequences that we suspect harbor binding sites for a given transcription factor. A typical scenario is data coming from expression experiments, in which we wish to analyze the promoter region of a bunch of genes that are up- or down-regulated under some condition. The goal of motif discovery is to detect the transcription factor binding motif (i.e. the sequence “pattern” bound by the TF), by assuming that it will be overrepresented in our sample of sequences. There are different strategies to accomplish this, but the standard approach uses expectation maximization (EM) and in particular Gibbs sampling or greedy search. Popular algorithms for motif discovery are MEME, Gibbs Motif Sampler or CONSENSUS. More recently, motif discovery algorithms that make use of phylogenetic foot-printing (the idea that TF-binding site will be conserved in the promoter sequences for the same gene in different species) have become available. These are not usually applied to complement experimental work, but can be used to provide a starting point for it. Popular algorithms include FootPrinter and PhyloGibbs.
The principle of ChIP-chip is simple. The first step is to cross-link the protein-DNA complex. This is done using a fixating agent, such as formaldehyde. The cross-linking can later be reversed with heat. Cross-linking kills the cell, giving a snapshot of the bound TF at a given time. The cell is then lysed, the DNA sheared by sonication and the chromatin[2] (TF-DNA complexes) is pulled down using an antibody (i.e. immunoprecipitated). If an antibody for the TF is available, then it is used; otherwise, the TF is tagged with an epitope targeted by commercially available antibodies (the latter option is cheaper, but runs the risk of altering the TF's functionality). Cross-linking is then reversed to free the bound DNA, which is then amplified, labeled with a fluorophore and dumped onto a DNA-array. The scanned array reveals the genomic regions bound by the TF. The resolution is around ~500 bp as a result of the sonication step.
In motif discovery, we are given a set of sequences that we suspect harbor binding sites for a given transcription factor. A typical scenario is data coming from expression experiments, in which we wish to analyze the promoter region of a bunch of genes that are up- or down-regulated under some condition. The goal of motif discovery is to detect the transcription factor binding motif (i.e. the sequence “pattern” bound by the TF), by assuming that it will be overrepresented in our sample of sequences. There are different strategies to accomplish this, but the standard approach uses expectation maximization (EM) and in particular Gibbs sampling or greedy search. Popular algorithms for motif discovery are MEME, Gibbs Motif Sampler or CONSENSUS. More recently, motif discovery algorithms that make use of phylogenetic foot-printing (the idea that TF-binding site will be conserved in the promoter sequences for the same gene in different species) have become available. These are not usually applied to complement experimental work, but can be used to provide a starting point for it. Popular algorithms include FootPrinter and PhyloGibbs.
The principle of ChIP-chip is simple. The first step is to cross-link the protein-DNA complex. This is done using a fixating agent, such as formaldehyde. The cross-linking can later be reversed with heat. Cross-linking kills the cell, giving a snapshot of the bound TF at a given time. The cell is then lysed, the DNA sheared by sonication and the chromatin[2] (TF-DNA complexes) is pulled down using an antibody (i.e. immunoprecipitated). If an antibody for the TF is available, then it is used; otherwise, the TF is tagged with an epitope targeted by commercially available antibodies (the latter option is cheaper, but runs the risk of altering the TF's functionality). Cross-linking is then reversed to free the bound DNA, which is then amplified, labeled with a fluorophore and dumped onto a DNA-array. The scanned array reveals the genomic regions bound by the TF. The resolution is around ~500 bp as a result of the sonication step.
In motif discovery, we are given a set of sequences that we suspect harbor binding sites for a given transcription factor. A typical scenario is data coming from expression experiments, in which we wish to analyze the promoter region of a bunch of genes that are up- or down-regulated under some condition. The goal of motif discovery is to detect the transcription factor binding motif (i.e. the sequence “pattern” bound by the TF), by assuming that it will be overrepresented in our sample of sequences. There are different strategies to accomplish this, but the standard approach uses expectation maximization (EM) and in particular Gibbs sampling or greedy search. Popular algorithms for motif discovery are MEME, Gibbs Motif Sampler or CONSENSUS. More recently, motif discovery algorithms that make use of phylogenetic foot-printing (the idea that TF-binding site will be conserved in the promoter sequences for the same gene in different species) have become available. These are not usually applied to complement experimental work, but can be used to provide a starting point for it. Popular algorithms include FootPrinter and PhyloGibbs.
The principle of ChIP-chip is simple. The first step is to cross-link the protein-DNA complex. This is done using a fixating agent, such as formaldehyde. The cross-linking can later be reversed with heat. Cross-linking kills the cell, giving a snapshot of the bound TF at a given time. The cell is then lysed, the DNA sheared by sonication and the chromatin[2] (TF-DNA complexes) is pulled down using an antibody (i.e. immunoprecipitated). If an antibody for the TF is available, then it is used; otherwise, the TF is tagged with an epitope targeted by commercially available antibodies (the latter option is cheaper, but runs the risk of altering the TF's functionality). Cross-linking is then reversed to free the bound DNA, which is then amplified, labeled with a fluorophore and dumped onto a DNA-array. The scanned array reveals the genomic regions bound by the TF. The resolution is around ~500 bp as a result of the sonication step.
In motif discovery, we are given a set of sequences that we suspect harbor binding sites for a given transcription factor. A typical scenario is data coming from expression experiments, in which we wish to analyze the promoter region of a bunch of genes that are up- or down-regulated under some condition. The goal of motif discovery is to detect the transcription factor binding motif (i.e. the sequence “pattern” bound by the TF), by assuming that it will be overrepresented in our sample of sequences. There are different strategies to accomplish this, but the standard approach uses expectation maximization (EM) and in particular Gibbs sampling or greedy search. Popular algorithms for motif discovery are MEME, Gibbs Motif Sampler or CONSENSUS. More recently, motif discovery algorithms that make use of phylogenetic foot-printing (the idea that TF-binding site will be conserved in the promoter sequences for the same gene in different species) have become available. These are not usually applied to complement experimental work, but can be used to provide a starting point for it. Popular algorithms include FootPrinter and PhyloGibbs.
The principle of ChIP-chip is simple. The first step is to cross-link the protein-DNA complex. This is done using a fixating agent, such as formaldehyde. The cross-linking can later be reversed with heat. Cross-linking kills the cell, giving a snapshot of the bound TF at a given time. The cell is then lysed, the DNA sheared by sonication and the chromatin[2] (TF-DNA complexes) is pulled down using an antibody (i.e. immunoprecipitated). If an antibody for the TF is available, then it is used; otherwise, the TF is tagged with an epitope targeted by commercially available antibodies (the latter option is cheaper, but runs the risk of altering the TF's functionality). Cross-linking is then reversed to free the bound DNA, which is then amplified, labeled with a fluorophore and dumped onto a DNA-array. The scanned array reveals the genomic regions bound by the TF. The resolution is around ~500 bp as a result of the sonication step.
In motif discovery, we are given a set of sequences that we suspect harbor binding sites for a given transcription factor. A typical scenario is data coming from expression experiments, in which we wish to analyze the promoter region of a bunch of genes that are up- or down-regulated under some condition. The goal of motif discovery is to detect the transcription factor binding motif (i.e. the sequence “pattern” bound by the TF), by assuming that it will be overrepresented in our sample of sequences. There are different strategies to accomplish this, but the standard approach uses expectation maximization (EM) and in particular Gibbs sampling or greedy search. Popular algorithms for motif discovery are MEME, Gibbs Motif Sampler or CONSENSUS. More recently, motif discovery algorithms that make use of phylogenetic foot-printing (the idea that TF-binding site will be conserved in the promoter sequences for the same gene in different species) have become available. These are not usually applied to complement experimental work, but can be used to provide a starting point for it. Popular algorithms include FootPrinter and PhyloGibbs.
The principle of ChIP-chip is simple. The first step is to cross-link the protein-DNA complex. This is done using a fixating agent, such as formaldehyde. The cross-linking can later be reversed with heat. Cross-linking kills the cell, giving a snapshot of the bound TF at a given time. The cell is then lysed, the DNA sheared by sonication and the chromatin[2] (TF-DNA complexes) is pulled down using an antibody (i.e. immunoprecipitated). If an antibody for the TF is available, then it is used; otherwise, the TF is tagged with an epitope targeted by commercially available antibodies (the latter option is cheaper, but runs the risk of altering the TF's functionality). Cross-linking is then reversed to free the bound DNA, which is then amplified, labeled with a fluorophore and dumped onto a DNA-array. The scanned array reveals the genomic regions bound by the TF. The resolution is around ~500 bp as a result of the sonication step.
In motif discovery, we are given a set of sequences that we suspect harbor binding sites for a given transcription factor. A typical scenario is data coming from expression experiments, in which we wish to analyze the promoter region of a bunch of genes that are up- or down-regulated under some condition. The goal of motif discovery is to detect the transcription factor binding motif (i.e. the sequence “pattern” bound by the TF), by assuming that it will be overrepresented in our sample of sequences. There are different strategies to accomplish this, but the standard approach uses expectation maximization (EM) and in particular Gibbs sampling or greedy search. Popular algorithms for motif discovery are MEME, Gibbs Motif Sampler or CONSENSUS. More recently, motif discovery algorithms that make use of phylogenetic foot-printing (the idea that TF-binding site will be conserved in the promoter sequences for the same gene in different species) have become available. These are not usually applied to complement experimental work, but can be used to provide a starting point for it. Popular algorithms include FootPrinter and PhyloGibbs.
The principle of ChIP-chip is simple. The first step is to cross-link the protein-DNA complex. This is done using a fixating agent, such as formaldehyde. The cross-linking can later be reversed with heat. Cross-linking kills the cell, giving a snapshot of the bound TF at a given time. The cell is then lysed, the DNA sheared by sonication and the chromatin[2] (TF-DNA complexes) is pulled down using an antibody (i.e. immunoprecipitated). If an antibody for the TF is available, then it is used; otherwise, the TF is tagged with an epitope targeted by commercially available antibodies (the latter option is cheaper, but runs the risk of altering the TF's functionality). Cross-linking is then reversed to free the bound DNA, which is then amplified, labeled with a fluorophore and dumped onto a DNA-array. The scanned array reveals the genomic regions bound by the TF. The resolution is around ~500 bp as a result of the sonication step.
In motif discovery, we are given a set of sequences that we suspect harbor binding sites for a given transcription factor. A typical scenario is data coming from expression experiments, in which we wish to analyze the promoter region of a bunch of genes that are up- or down-regulated under some condition. The goal of motif discovery is to detect the transcription factor binding motif (i.e. the sequence “pattern” bound by the TF), by assuming that it will be overrepresented in our sample of sequences. There are different strategies to accomplish this, but the standard approach uses expectation maximization (EM) and in particular Gibbs sampling or greedy search. Popular algorithms for motif discovery are MEME, Gibbs Motif Sampler or CONSENSUS. More recently, motif discovery algorithms that make use of phylogenetic foot-printing (the idea that TF-binding site will be conserved in the promoter sequences for the same gene in different species) have become available. These are not usually applied to complement experimental work, but can be used to provide a starting point for it. Popular algorithms include FootPrinter and PhyloGibbs.
The principle of ChIP-chip is simple. The first step is to cross-link the protein-DNA complex. This is done using a fixating agent, such as formaldehyde. The cross-linking can later be reversed with heat. Cross-linking kills the cell, giving a snapshot of the bound TF at a given time. The cell is then lysed, the DNA sheared by sonication and the chromatin[2] (TF-DNA complexes) is pulled down using an antibody (i.e. immunoprecipitated). If an antibody for the TF is available, then it is used; otherwise, the TF is tagged with an epitope targeted by commercially available antibodies (the latter option is cheaper, but runs the risk of altering the TF's functionality). Cross-linking is then reversed to free the bound DNA, which is then amplified, labeled with a fluorophore and dumped onto a DNA-array. The scanned array reveals the genomic regions bound by the TF. The resolution is around ~500 bp as a result of the sonication step.
In motif discovery, we are given a set of sequences that we suspect harbor binding sites for a given transcription factor. A typical scenario is data coming from expression experiments, in which we wish to analyze the promoter region of a bunch of genes that are up- or down-regulated under some condition. The goal of motif discovery is to detect the transcription factor binding motif (i.e. the sequence “pattern” bound by the TF), by assuming that it will be overrepresented in our sample of sequences. There are different strategies to accomplish this, but the standard approach uses expectation maximization (EM) and in particular Gibbs sampling or greedy search. Popular algorithms for motif discovery are MEME, Gibbs Motif Sampler or CONSENSUS. More recently, motif discovery algorithms that make use of phylogenetic foot-printing (the idea that TF-binding site will be conserved in the promoter sequences for the same gene in different species) have become available. These are not usually applied to complement experimental work, but can be used to provide a starting point for it. Popular algorithms include FootPrinter and PhyloGibbs.
The principle of ChIP-chip is simple. The first step is to cross-link the protein-DNA complex. This is done using a fixating agent, such as formaldehyde. The cross-linking can later be reversed with heat. Cross-linking kills the cell, giving a snapshot of the bound TF at a given time. The cell is then lysed, the DNA sheared by sonication and the chromatin[2] (TF-DNA complexes) is pulled down using an antibody (i.e. immunoprecipitated). If an antibody for the TF is available, then it is used; otherwise, the TF is tagged with an epitope targeted by commercially available antibodies (the latter option is cheaper, but runs the risk of altering the TF's functionality). Cross-linking is then reversed to free the bound DNA, which is then amplified, labeled with a fluorophore and dumped onto a DNA-array. The scanned array reveals the genomic regions bound by the TF. The resolution is around ~500 bp as a result of the sonication step.
In motif discovery, we are given a set of sequences that we suspect harbor binding sites for a given transcription factor. A typical scenario is data coming from expression experiments, in which we wish to analyze the promoter region of a bunch of genes that are up- or down-regulated under some condition. The goal of motif discovery is to detect the transcription factor binding motif (i.e. the sequence “pattern” bound by the TF), by assuming that it will be overrepresented in our sample of sequences. There are different strategies to accomplish this, but the standard approach uses expectation maximization (EM) and in particular Gibbs sampling or greedy search. Popular algorithms for motif discovery are MEME, Gibbs Motif Sampler or CONSENSUS. More recently, motif discovery algorithms that make use of phylogenetic foot-printing (the idea that TF-binding site will be conserved in the promoter sequences for the same gene in different species) have become available. These are not usually applied to complement experimental work, but can be used to provide a starting point for it. Popular algorithms include FootPrinter and PhyloGibbs.
The principle of ChIP-chip is simple. The first step is to cross-link the protein-DNA complex. This is done using a fixating agent, such as formaldehyde. The cross-linking can later be reversed with heat. Cross-linking kills the cell, giving a snapshot of the bound TF at a given time. The cell is then lysed, the DNA sheared by sonication and the chromatin[2] (TF-DNA complexes) is pulled down using an antibody (i.e. immunoprecipitated). If an antibody for the TF is available, then it is used; otherwise, the TF is tagged with an epitope targeted by commercially available antibodies (the latter option is cheaper, but runs the risk of altering the TF's functionality). Cross-linking is then reversed to free the bound DNA, which is then amplified, labeled with a fluorophore and dumped onto a DNA-array. The scanned array reveals the genomic regions bound by the TF. The resolution is around ~500 bp as a result of the sonication step.
In motif discovery, we are given a set of sequences that we suspect harbor binding sites for a given transcription factor. A typical scenario is data coming from expression experiments, in which we wish to analyze the promoter region of a bunch of genes that are up- or down-regulated under some condition. The goal of motif discovery is to detect the transcription factor binding motif (i.e. the sequence “pattern” bound by the TF), by assuming that it will be overrepresented in our sample of sequences. There are different strategies to accomplish this, but the standard approach uses expectation maximization (EM) and in particular Gibbs sampling or greedy search. Popular algorithms for motif discovery are MEME, Gibbs Motif Sampler or CONSENSUS. More recently, motif discovery algorithms that make use of phylogenetic foot-printing (the idea that TF-binding site will be conserved in the promoter sequences for the same gene in different species) have become available. These are not usually applied to complement experimental work, but can be used to provide a starting point for it. Popular algorithms include FootPrinter and PhyloGibbs.
The principle of ChIP-chip is simple. The first step is to cross-link the protein-DNA complex. This is done using a fixating agent, such as formaldehyde. The cross-linking can later be reversed with heat. Cross-linking kills the cell, giving a snapshot of the bound TF at a given time. The cell is then lysed, the DNA sheared by sonication and the chromatin[2] (TF-DNA complexes) is pulled down using an antibody (i.e. immunoprecipitated). If an antibody for the TF is available, then it is used; otherwise, the TF is tagged with an epitope targeted by commercially available antibodies (the latter option is cheaper, but runs the risk of altering the TF's functionality). Cross-linking is then reversed to free the bound DNA, which is then amplified, labeled with a fluorophore and dumped onto a DNA-array. The scanned array reveals the genomic regions bound by the TF. The resolution is around ~500 bp as a result of the sonication step.
In motif discovery, we are given a set of sequences that we suspect harbor binding sites for a given transcription factor. A typical scenario is data coming from expression experiments, in which we wish to analyze the promoter region of a bunch of genes that are up- or down-regulated under some condition. The goal of motif discovery is to detect the transcription factor binding motif (i.e. the sequence “pattern” bound by the TF), by assuming that it will be overrepresented in our sample of sequences. There are different strategies to accomplish this, but the standard approach uses expectation maximization (EM) and in particular Gibbs sampling or greedy search. Popular algorithms for motif discovery are MEME, Gibbs Motif Sampler or CONSENSUS. More recently, motif discovery algorithms that make use of phylogenetic foot-printing (the idea that TF-binding site will be conserved in the promoter sequences for the same gene in different species) have become available. These are not usually applied to complement experimental work, but can be used to provide a starting point for it. Popular algorithms include FootPrinter and PhyloGibbs.
The principle of ChIP-chip is simple. The first step is to cross-link the protein-DNA complex. This is done using a fixating agent, such as formaldehyde. The cross-linking can later be reversed with heat. Cross-linking kills the cell, giving a snapshot of the bound TF at a given time. The cell is then lysed, the DNA sheared by sonication and the chromatin[2] (TF-DNA complexes) is pulled down using an antibody (i.e. immunoprecipitated). If an antibody for the TF is available, then it is used; otherwise, the TF is tagged with an epitope targeted by commercially available antibodies (the latter option is cheaper, but runs the risk of altering the TF's functionality). Cross-linking is then reversed to free the bound DNA, which is then amplified, labeled with a fluorophore and dumped onto a DNA-array. The scanned array reveals the genomic regions bound by the TF. The resolution is around ~500 bp as a result of the sonication step.
In motif discovery, we are given a set of sequences that we suspect harbor binding sites for a given transcription factor. A typical scenario is data coming from expression experiments, in which we wish to analyze the promoter region of a bunch of genes that are up- or down-regulated under some condition. The goal of motif discovery is to detect the transcription factor binding motif (i.e. the sequence “pattern” bound by the TF), by assuming that it will be overrepresented in our sample of sequences. There are different strategies to accomplish this, but the standard approach uses expectation maximization (EM) and in particular Gibbs sampling or greedy search. Popular algorithms for motif discovery are MEME, Gibbs Motif Sampler or CONSENSUS. More recently, motif discovery algorithms that make use of phylogenetic foot-printing (the idea that TF-binding site will be conserved in the promoter sequences for the same gene in different species) have become available. These are not usually applied to complement experimental work, but can be used to provide a starting point for it. Popular algorithms include FootPrinter and PhyloGibbs.
The principle of ChIP-chip is simple. The first step is to cross-link the protein-DNA complex. This is done using a fixating agent, such as formaldehyde. The cross-linking can later be reversed with heat. Cross-linking kills the cell, giving a snapshot of the bound TF at a given time. The cell is then lysed, the DNA sheared by sonication and the chromatin[2] (TF-DNA complexes) is pulled down using an antibody (i.e. immunoprecipitated). If an antibody for the TF is available, then it is used; otherwise, the TF is tagged with an epitope targeted by commercially available antibodies (the latter option is cheaper, but runs the risk of altering the TF's functionality). Cross-linking is then reversed to free the bound DNA, which is then amplified, labeled with a fluorophore and dumped onto a DNA-array. The scanned array reveals the genomic regions bound by the TF. The resolution is around ~500 bp as a result of the sonication step.
In motif discovery, we are given a set of sequences that we suspect harbor binding sites for a given transcription factor. A typical scenario is data coming from expression experiments, in which we wish to analyze the promoter region of a bunch of genes that are up- or down-regulated under some condition. The goal of motif discovery is to detect the transcription factor binding motif (i.e. the sequence “pattern” bound by the TF), by assuming that it will be overrepresented in our sample of sequences. There are different strategies to accomplish this, but the standard approach uses expectation maximization (EM) and in particular Gibbs sampling or greedy search. Popular algorithms for motif discovery are MEME, Gibbs Motif Sampler or CONSENSUS. More recently, motif discovery algorithms that make use of phylogenetic foot-printing (the idea that TF-binding site will be conserved in the promoter sequences for the same gene in different species) have become available. These are not usually applied to complement experimental work, but can be used to provide a starting point for it. Popular algorithms include FootPrinter and PhyloGibbs.
The principle of ChIP-chip is simple. The first step is to cross-link the protein-DNA complex. This is done using a fixating agent, such as formaldehyde. The cross-linking can later be reversed with heat. Cross-linking kills the cell, giving a snapshot of the bound TF at a given time. The cell is then lysed, the DNA sheared by sonication and the chromatin[2] (TF-DNA complexes) is pulled down using an antibody (i.e. immunoprecipitated). If an antibody for the TF is available, then it is used; otherwise, the TF is tagged with an epitope targeted by commercially available antibodies (the latter option is cheaper, but runs the risk of altering the TF's functionality). Cross-linking is then reversed to free the bound DNA, which is then amplified, labeled with a fluorophore and dumped onto a DNA-array. The scanned array reveals the genomic regions bound by the TF. The resolution is around ~500 bp as a result of the sonication step.
In motif discovery, we are given a set of sequences that we suspect harbor binding sites for a given transcription factor. A typical scenario is data coming from expression experiments, in which we wish to analyze the promoter region of a bunch of genes that are up- or down-regulated under some condition. The goal of motif discovery is to detect the transcription factor binding motif (i.e. the sequence “pattern” bound by the TF), by assuming that it will be overrepresented in our sample of sequences. There are different strategies to accomplish this, but the standard approach uses expectation maximization (EM) and in particular Gibbs sampling or greedy search. Popular algorithms for motif discovery are MEME, Gibbs Motif Sampler or CONSENSUS. More recently, motif discovery algorithms that make use of phylogenetic foot-printing (the idea that TF-binding site will be conserved in the promoter sequences for the same gene in different species) have become available. These are not usually applied to complement experimental work, but can be used to provide a starting point for it. Popular algorithms include FootPrinter and PhyloGibbs.
The principle of ChIP-chip is simple. The first step is to cross-link the protein-DNA complex. This is done using a fixating agent, such as formaldehyde. The cross-linking can later be reversed with heat. Cross-linking kills the cell, giving a snapshot of the bound TF at a given time. The cell is then lysed, the DNA sheared by sonication and the chromatin[2] (TF-DNA complexes) is pulled down using an antibody (i.e. immunoprecipitated). If an antibody for the TF is available, then it is used; otherwise, the TF is tagged with an epitope targeted by commercially available antibodies (the latter option is cheaper, but runs the risk of altering the TF's functionality). Cross-linking is then reversed to free the bound DNA, which is then amplified, labeled with a fluorophore and dumped onto a DNA-array. The scanned array reveals the genomic regions bound by the TF. The resolution is around ~500 bp as a result of the sonication step.
In motif discovery, we are given a set of sequences that we suspect harbor binding sites for a given transcription factor. A typical scenario is data coming from expression experiments, in which we wish to analyze the promoter region of a bunch of genes that are up- or down-regulated under some condition. The goal of motif discovery is to detect the transcription factor binding motif (i.e. the sequence “pattern” bound by the TF), by assuming that it will be overrepresented in our sample of sequences. There are different strategies to accomplish this, but the standard approach uses expectation maximization (EM) and in particular Gibbs sampling or greedy search. Popular algorithms for motif discovery are MEME, Gibbs Motif Sampler or CONSENSUS. More recently, motif discovery algorithms that make use of phylogenetic foot-printing (the idea that TF-binding site will be conserved in the promoter sequences for the same gene in different species) have become available. These are not usually applied to complement experimental work, but can be used to provide a starting point for it. Popular algorithms include FootPrinter and PhyloGibbs.
The principle of ChIP-chip is simple. The first step is to cross-link the protein-DNA complex. This is done using a fixating agent, such as formaldehyde. The cross-linking can later be reversed with heat. Cross-linking kills the cell, giving a snapshot of the bound TF at a given time. The cell is then lysed, the DNA sheared by sonication and the chromatin[2] (TF-DNA complexes) is pulled down using an antibody (i.e. immunoprecipitated). If an antibody for the TF is available, then it is used; otherwise, the TF is tagged with an epitope targeted by commercially available antibodies (the latter option is cheaper, but runs the risk of altering the TF's functionality). Cross-linking is then reversed to free the bound DNA, which is then amplified, labeled with a fluorophore and dumped onto a DNA-array. The scanned array reveals the genomic regions bound by the TF. The resolution is around ~500 bp as a result of the sonication step.
In motif discovery, we are given a set of sequences that we suspect harbor binding sites for a given transcription factor. A typical scenario is data coming from expression experiments, in which we wish to analyze the promoter region of a bunch of genes that are up- or down-regulated under some condition. The goal of motif discovery is to detect the transcription factor binding motif (i.e. the sequence “pattern” bound by the TF), by assuming that it will be overrepresented in our sample of sequences. There are different strategies to accomplish this, but the standard approach uses expectation maximization (EM) and in particular Gibbs sampling or greedy search. Popular algorithms for motif discovery are MEME, Gibbs Motif Sampler or CONSENSUS. More recently, motif discovery algorithms that make use of phylogenetic foot-printing (the idea that TF-binding site will be conserved in the promoter sequences for the same gene in different species) have become available. These are not usually applied to complement experimental work, but can be used to provide a starting point for it. Popular algorithms include FootPrinter and PhyloGibbs.
The principle of ChIP-chip is simple. The first step is to cross-link the protein-DNA complex. This is done using a fixating agent, such as formaldehyde. The cross-linking can later be reversed with heat. Cross-linking kills the cell, giving a snapshot of the bound TF at a given time. The cell is then lysed, the DNA sheared by sonication and the chromatin[2] (TF-DNA complexes) is pulled down using an antibody (i.e. immunoprecipitated). If an antibody for the TF is available, then it is used; otherwise, the TF is tagged with an epitope targeted by commercially available antibodies (the latter option is cheaper, but runs the risk of altering the TF's functionality). Cross-linking is then reversed to free the bound DNA, which is then amplified, labeled with a fluorophore and dumped onto a DNA-array. The scanned array reveals the genomic regions bound by the TF. The resolution is around ~500 bp as a result of the sonication step.
In motif discovery, we are given a set of sequences that we suspect harbor binding sites for a given transcription factor. A typical scenario is data coming from expression experiments, in which we wish to analyze the promoter region of a bunch of genes that are up- or down-regulated under some condition. The goal of motif discovery is to detect the transcription factor binding motif (i.e. the sequence “pattern” bound by the TF), by assuming that it will be overrepresented in our sample of sequences. There are different strategies to accomplish this, but the standard approach uses expectation maximization (EM) and in particular Gibbs sampling or greedy search. Popular algorithms for motif discovery are MEME, Gibbs Motif Sampler or CONSENSUS. More recently, motif discovery algorithms that make use of phylogenetic foot-printing (the idea that TF-binding site will be conserved in the promoter sequences for the same gene in different species) have become available. These are not usually applied to complement experimental work, but can be used to provide a starting point for it. Popular algorithms include FootPrinter and PhyloGibbs.
The principle of ChIP-chip is simple. The first step is to cross-link the protein-DNA complex. This is done using a fixating agent, such as formaldehyde. The cross-linking can later be reversed with heat. Cross-linking kills the cell, giving a snapshot of the bound TF at a given time. The cell is then lysed, the DNA sheared by sonication and the chromatin[2] (TF-DNA complexes) is pulled down using an antibody (i.e. immunoprecipitated). If an antibody for the TF is available, then it is used; otherwise, the TF is tagged with an epitope targeted by commercially available antibodies (the latter option is cheaper, but runs the risk of altering the TF's functionality). Cross-linking is then reversed to free the bound DNA, which is then amplified, labeled with a fluorophore and dumped onto a DNA-array. The scanned array reveals the genomic regions bound by the TF. The resolution is around ~500 bp as a result of the sonication step.
In motif discovery, we are given a set of sequences that we suspect harbor binding sites for a given transcription factor. A typical scenario is data coming from expression experiments, in which we wish to analyze the promoter region of a bunch of genes that are up- or down-regulated under some condition. The goal of motif discovery is to detect the transcription factor binding motif (i.e. the sequence “pattern” bound by the TF), by assuming that it will be overrepresented in our sample of sequences. There are different strategies to accomplish this, but the standard approach uses expectation maximization (EM) and in particular Gibbs sampling or greedy search. Popular algorithms for motif discovery are MEME, Gibbs Motif Sampler or CONSENSUS. More recently, motif discovery algorithms that make use of phylogenetic foot-printing (the idea that TF-binding site will be conserved in the promoter sequences for the same gene in different species) have become available. These are not usually applied to complement experimental work, but can be used to provide a starting point for it. Popular algorithms include FootPrinter and PhyloGibbs.
The principle of ChIP-chip is simple. The first step is to cross-link the protein-DNA complex. This is done using a fixating agent, such as formaldehyde. The cross-linking can later be reversed with heat. Cross-linking kills the cell, giving a snapshot of the bound TF at a given time. The cell is then lysed, the DNA sheared by sonication and the chromatin[2] (TF-DNA complexes) is pulled down using an antibody (i.e. immunoprecipitated). If an antibody for the TF is available, then it is used; otherwise, the TF is tagged with an epitope targeted by commercially available antibodies (the latter option is cheaper, but runs the risk of altering the TF's functionality). Cross-linking is then reversed to free the bound DNA, which is then amplified, labeled with a fluorophore and dumped onto a DNA-array. The scanned array reveals the genomic regions bound by the TF. The resolution is around ~500 bp as a result of the sonication step.
In motif discovery, we are given a set of sequences that we suspect harbor binding sites for a given transcription factor. A typical scenario is data coming from expression experiments, in which we wish to analyze the promoter region of a bunch of genes that are up- or down-regulated under some condition. The goal of motif discovery is to detect the transcription factor binding motif (i.e. the sequence “pattern” bound by the TF), by assuming that it will be overrepresented in our sample of sequences. There are different strategies to accomplish this, but the standard approach uses expectation maximization (EM) and in particular Gibbs sampling or greedy search. Popular algorithms for motif discovery are MEME, Gibbs Motif Sampler or CONSENSUS. More recently, motif discovery algorithms that make use of phylogenetic foot-printing (the idea that TF-binding site will be conserved in the promoter sequences for the same gene in different species) have become available. These are not usually applied to complement experimental work, but can be used to provide a starting point for it. Popular algorithms include FootPrinter and PhyloGibbs.
The principle of ChIP-chip is simple. The first step is to cross-link the protein-DNA complex. This is done using a fixating agent, such as formaldehyde. The cross-linking can later be reversed with heat. Cross-linking kills the cell, giving a snapshot of the bound TF at a given time. The cell is then lysed, the DNA sheared by sonication and the chromatin[2] (TF-DNA complexes) is pulled down using an antibody (i.e. immunoprecipitated). If an antibody for the TF is available, then it is used; otherwise, the TF is tagged with an epitope targeted by commercially available antibodies (the latter option is cheaper, but runs the risk of altering the TF's functionality). Cross-linking is then reversed to free the bound DNA, which is then amplified, labeled with a fluorophore and dumped onto a DNA-array. The scanned array reveals the genomic regions bound by the TF. The resolution is around ~500 bp as a result of the sonication step.
In motif discovery, we are given a set of sequences that we suspect harbor binding sites for a given transcription factor. A typical scenario is data coming from expression experiments, in which we wish to analyze the promoter region of a bunch of genes that are up- or down-regulated under some condition. The goal of motif discovery is to detect the transcription factor binding motif (i.e. the sequence “pattern” bound by the TF), by assuming that it will be overrepresented in our sample of sequences. There are different strategies to accomplish this, but the standard approach uses expectation maximization (EM) and in particular Gibbs sampling or greedy search. Popular algorithms for motif discovery are MEME, Gibbs Motif Sampler or CONSENSUS. More recently, motif discovery algorithms that make use of phylogenetic foot-printing (the idea that TF-binding site will be conserved in the promoter sequences for the same gene in different species) have become available. These are not usually applied to complement experimental work, but can be used to provide a starting point for it. Popular algorithms include FootPrinter and PhyloGibbs.
The principle of ChIP-chip is simple. The first step is to cross-link the protein-DNA complex. This is done using a fixating agent, such as formaldehyde. The cross-linking can later be reversed with heat. Cross-linking kills the cell, giving a snapshot of the bound TF at a given time. The cell is then lysed, the DNA sheared by sonication and the chromatin[2] (TF-DNA complexes) is pulled down using an antibody (i.e. immunoprecipitated). If an antibody for the TF is available, then it is used; otherwise, the TF is tagged with an epitope targeted by commercially available antibodies (the latter option is cheaper, but runs the risk of altering the TF's functionality). Cross-linking is then reversed to free the bound DNA, which is then amplified, labeled with a fluorophore and dumped onto a DNA-array. The scanned array reveals the genomic regions bound by the TF. The resolution is around ~500 bp as a result of the sonication step.
In motif discovery, we are given a set of sequences that we suspect harbor binding sites for a given transcription factor. A typical scenario is data coming from expression experiments, in which we wish to analyze the promoter region of a bunch of genes that are up- or down-regulated under some condition. The goal of motif discovery is to detect the transcription factor binding motif (i.e. the sequence “pattern” bound by the TF), by assuming that it will be overrepresented in our sample of sequences. There are different strategies to accomplish this, but the standard approach uses expectation maximization (EM) and in particular Gibbs sampling or greedy search. Popular algorithms for motif discovery are MEME, Gibbs Motif Sampler or CONSENSUS. More recently, motif discovery algorithms that make use of phylogenetic foot-printing (the idea that TF-binding site will be conserved in the promoter sequences for the same gene in different species) have become available. These are not usually applied to complement experimental work, but can be used to provide a starting point for it. Popular algorithms include FootPrinter and PhyloGibbs.
The principle of ChIP-chip is simple. The first step is to cross-link the protein-DNA complex. This is done using a fixating agent, such as formaldehyde. The cross-linking can later be reversed with heat. Cross-linking kills the cell, giving a snapshot of the bound TF at a given time. The cell is then lysed, the DNA sheared by sonication and the chromatin[2] (TF-DNA complexes) is pulled down using an antibody (i.e. immunoprecipitated). If an antibody for the TF is available, then it is used; otherwise, the TF is tagged with an epitope targeted by commercially available antibodies (the latter option is cheaper, but runs the risk of altering the TF's functionality). Cross-linking is then reversed to free the bound DNA, which is then amplified, labeled with a fluorophore and dumped onto a DNA-array. The scanned array reveals the genomic regions bound by the TF. The resolution is around ~500 bp as a result of the sonication step.
In motif discovery, we are given a set of sequences that we suspect harbor binding sites for a given transcription factor. A typical scenario is data coming from expression experiments, in which we wish to analyze the promoter region of a bunch of genes that are up- or down-regulated under some condition. The goal of motif discovery is to detect the transcription factor binding motif (i.e. the sequence “pattern” bound by the TF), by assuming that it will be overrepresented in our sample of sequences. There are different strategies to accomplish this, but the standard approach uses expectation maximization (EM) and in particular Gibbs sampling or greedy search. Popular algorithms for motif discovery are MEME, Gibbs Motif Sampler or CONSENSUS. More recently, motif discovery algorithms that make use of phylogenetic foot-printing (the idea that TF-binding site will be conserved in the promoter sequences for the same gene in different species) have become available. These are not usually applied to complement experimental work, but can be used to provide a starting point for it. Popular algorithms include FootPrinter and PhyloGibbs.
The principle of ChIP-chip is simple. The first step is to cross-link the protein-DNA complex. This is done using a fixating agent, such as formaldehyde. The cross-linking can later be reversed with heat. Cross-linking kills the cell, giving a snapshot of the bound TF at a given time. The cell is then lysed, the DNA sheared by sonication and the chromatin[2] (TF-DNA complexes) is pulled down using an antibody (i.e. immunoprecipitated). If an antibody for the TF is available, then it is used; otherwise, the TF is tagged with an epitope targeted by commercially available antibodies (the latter option is cheaper, but runs the risk of altering the TF's functionality). Cross-linking is then reversed to free the bound DNA, which is then amplified, labeled with a fluorophore and dumped onto a DNA-array. The scanned array reveals the genomic regions bound by the TF. The resolution is around ~500 bp as a result of the sonication step.
In motif discovery, we are given a set of sequences that we suspect harbor binding sites for a given transcription factor. A typical scenario is data coming from expression experiments, in which we wish to analyze the promoter region of a bunch of genes that are up- or down-regulated under some condition. The goal of motif discovery is to detect the transcription factor binding motif (i.e. the sequence “pattern” bound by the TF), by assuming that it will be overrepresented in our sample of sequences. There are different strategies to accomplish this, but the standard approach uses expectation maximization (EM) and in particular Gibbs sampling or greedy search. Popular algorithms for motif discovery are MEME, Gibbs Motif Sampler or CONSENSUS. More recently, motif discovery algorithms that make use of phylogenetic foot-printing (the idea that TF-binding site will be conserved in the promoter sequences for the same gene in different species) have become available. These are not usually applied to complement experimental work, but can be used to provide a starting point for it. Popular algorithms include FootPrinter and PhyloGibbs.
The principle of ChIP-chip is simple. The first step is to cross-link the protein-DNA complex. This is done using a fixating agent, such as formaldehyde. The cross-linking can later be reversed with heat. Cross-linking kills the cell, giving a snapshot of the bound TF at a given time. The cell is then lysed, the DNA sheared by sonication and the chromatin[2] (TF-DNA complexes) is pulled down using an antibody (i.e. immunoprecipitated). If an antibody for the TF is available, then it is used; otherwise, the TF is tagged with an epitope targeted by commercially available antibodies (the latter option is cheaper, but runs the risk of altering the TF's functionality). Cross-linking is then reversed to free the bound DNA, which is then amplified, labeled with a fluorophore and dumped onto a DNA-array. The scanned array reveals the genomic regions bound by the TF. The resolution is around ~500 bp as a result of the sonication step.
In motif discovery, we are given a set of sequences that we suspect harbor binding sites for a given transcription factor. A typical scenario is data coming from expression experiments, in which we wish to analyze the promoter region of a bunch of genes that are up- or down-regulated under some condition. The goal of motif discovery is to detect the transcription factor binding motif (i.e. the sequence “pattern” bound by the TF), by assuming that it will be overrepresented in our sample of sequences. There are different strategies to accomplish this, but the standard approach uses expectation maximization (EM) and in particular Gibbs sampling or greedy search. Popular algorithms for motif discovery are MEME, Gibbs Motif Sampler or CONSENSUS. More recently, motif discovery algorithms that make use of phylogenetic foot-printing (the idea that TF-binding site will be conserved in the promoter sequences for the same gene in different species) have become available. These are not usually applied to complement experimental work, but can be used to provide a starting point for it. Popular algorithms include FootPrinter and PhyloGibbs.
The principle of ChIP-chip is simple. The first step is to cross-link the protein-DNA complex. This is done using a fixating agent, such as formaldehyde. The cross-linking can later be reversed with heat. Cross-linking kills the cell, giving a snapshot of the bound TF at a given time. The cell is then lysed, the DNA sheared by sonication and the chromatin[2] (TF-DNA complexes) is pulled down using an antibody (i.e. immunoprecipitated). If an antibody for the TF is available, then it is used; otherwise, the TF is tagged with an epitope targeted by commercially available antibodies (the latter option is cheaper, but runs the risk of altering the TF's functionality). Cross-linking is then reversed to free the bound DNA, which is then amplified, labeled with a fluorophore and dumped onto a DNA-array. The scanned array reveals the genomic regions bound by the TF. The resolution is around ~500 bp as a result of the sonication step.
In motif discovery, we are given a set of sequences that we suspect harbor binding sites for a given transcription factor. A typical scenario is data coming from expression experiments, in which we wish to analyze the promoter region of a bunch of genes that are up- or down-regulated under some condition. The goal of motif discovery is to detect the transcription factor binding motif (i.e. the sequence “pattern” bound by the TF), by assuming that it will be overrepresented in our sample of sequences. There are different strategies to accomplish this, but the standard approach uses expectation maximization (EM) and in particular Gibbs sampling or greedy search. Popular algorithms for motif discovery are MEME, Gibbs Motif Sampler or CONSENSUS. More recently, motif discovery algorithms that make use of phylogenetic foot-printing (the idea that TF-binding site will be conserved in the promoter sequences for the same gene in different species) have become available. These are not usually applied to complement experimental work, but can be used to provide a starting point for it. Popular algorithms include FootPrinter and PhyloGibbs.