Characterization of the CopR regulon of Lactococcus lactis IL1403.;Magnani D, Barré O, Gerber SD, Solioz M;Journal of bacteriology 2008 Jan;
190(2):536-45
[17993525]
Copper regulated proteins were identified by 2D gel electrophoresis and characterized by MALDI-TOF by comparing the cytosolic proteome of L. lactis cells grown in the absence of copper to that of cells challenged with 200 μM copper for 45 min. "cop" boxes were identified by visual inspection on promoters corresponding to genes induced by copper. A consensus search of the genome revealed 28 putative sites, which were then validated by EMSA. RT-PCR was used then to validate copper-mediated induction of six promoters.
Regulated genes for each binding site are displayed below. Gene regulation diagrams
show binding sites, positively-regulated genes,
negatively-regulated genes,
both positively and negatively regulated
genes, genes with unspecified type of regulation.
For each indvidual site, experimental techniques used to determine the site are also given.
This is a weak form of in-silico search, in which the consensus sequence for the motif is compared to genomic positions and the number of mismatches (between candidate site and consensus) is used as a measure of site-quality.
Electro-mobility shift-assays (or gel retardation assays) are a standard way of assessing TF-binding. A fragment of DNA of interest is amplified and labeled with a fluorophore. The fragment is left to incubate in a solution containing abundant TF and non-specific DNA (e.g. randomly cleaved DNA from salmon sperm, of all things) and then a gel is run with the incubated sample and a control (sample that has not been in contact with the TF). If the TF has bound the sample, the complex will migrate more slowly than unbound DNA through the gel, and this retarded band can be used as evidence of binding. The unspecific DNA ensures that the binding is specific to the fragment of interest and that any non-specific DNA-binding proteins left-over in the TF purification will bind there, instead of on the fragment of interest. EMSAs are typically carried out in a bunch of fragments, shown as multiple double (control+experiment) lanes in a wide picture. Certain additional controls are run in at least one of the fragments to ascertain specificity. In the most basic of these, specific competitor (the fragment of interest or a known positive control, unlabelled) is added to the reaction. This should sequester the TF and hence make the retardation band disappear, proving that the binding is indeed specific
MALDI-TOF mass spectrometry is used to determine the mass of larger compounds such as proteins. It is a frequently used method of establishing protein identity when constructing a proteome.
Quantitative Reverse-Transcription PCR is a modification of PCR in which RNA is first reverse transcribed into cDNA and this is amplified measuring the product (qPCR) in real time. It therefore allows one to analyze transcription by directly measuring the product (RNA) of a gene's transcription. If the gene is transcribed more, the starting product for PCR is larger and the corresponding volume of amplification is also larger.
This is a weak form of in-silico search, in which the consensus sequence for the motif is compared to genomic positions and the number of mismatches (between candidate site and consensus) is used as a measure of site-quality.
Electro-mobility shift-assays (or gel retardation assays) are a standard way of assessing TF-binding. A fragment of DNA of interest is amplified and labeled with a fluorophore. The fragment is left to incubate in a solution containing abundant TF and non-specific DNA (e.g. randomly cleaved DNA from salmon sperm, of all things) and then a gel is run with the incubated sample and a control (sample that has not been in contact with the TF). If the TF has bound the sample, the complex will migrate more slowly than unbound DNA through the gel, and this retarded band can be used as evidence of binding. The unspecific DNA ensures that the binding is specific to the fragment of interest and that any non-specific DNA-binding proteins left-over in the TF purification will bind there, instead of on the fragment of interest. EMSAs are typically carried out in a bunch of fragments, shown as multiple double (control+experiment) lanes in a wide picture. Certain additional controls are run in at least one of the fragments to ascertain specificity. In the most basic of these, specific competitor (the fragment of interest or a known positive control, unlabelled) is added to the reaction. This should sequester the TF and hence make the retardation band disappear, proving that the binding is indeed specific
MALDI-TOF mass spectrometry is used to determine the mass of larger compounds such as proteins. It is a frequently used method of establishing protein identity when constructing a proteome.
Quantitative Reverse-Transcription PCR is a modification of PCR in which RNA is first reverse transcribed into cDNA and this is amplified measuring the product (qPCR) in real time. It therefore allows one to analyze transcription by directly measuring the product (RNA) of a gene's transcription. If the gene is transcribed more, the starting product for PCR is larger and the corresponding volume of amplification is also larger.
This is a weak form of in-silico search, in which the consensus sequence for the motif is compared to genomic positions and the number of mismatches (between candidate site and consensus) is used as a measure of site-quality.
Electro-mobility shift-assays (or gel retardation assays) are a standard way of assessing TF-binding. A fragment of DNA of interest is amplified and labeled with a fluorophore. The fragment is left to incubate in a solution containing abundant TF and non-specific DNA (e.g. randomly cleaved DNA from salmon sperm, of all things) and then a gel is run with the incubated sample and a control (sample that has not been in contact with the TF). If the TF has bound the sample, the complex will migrate more slowly than unbound DNA through the gel, and this retarded band can be used as evidence of binding. The unspecific DNA ensures that the binding is specific to the fragment of interest and that any non-specific DNA-binding proteins left-over in the TF purification will bind there, instead of on the fragment of interest. EMSAs are typically carried out in a bunch of fragments, shown as multiple double (control+experiment) lanes in a wide picture. Certain additional controls are run in at least one of the fragments to ascertain specificity. In the most basic of these, specific competitor (the fragment of interest or a known positive control, unlabelled) is added to the reaction. This should sequester the TF and hence make the retardation band disappear, proving that the binding is indeed specific
MALDI-TOF mass spectrometry is used to determine the mass of larger compounds such as proteins. It is a frequently used method of establishing protein identity when constructing a proteome.
Quantitative Reverse-Transcription PCR is a modification of PCR in which RNA is first reverse transcribed into cDNA and this is amplified measuring the product (qPCR) in real time. It therefore allows one to analyze transcription by directly measuring the product (RNA) of a gene's transcription. If the gene is transcribed more, the starting product for PCR is larger and the corresponding volume of amplification is also larger.
This is a weak form of in-silico search, in which the consensus sequence for the motif is compared to genomic positions and the number of mismatches (between candidate site and consensus) is used as a measure of site-quality.
Electro-mobility shift-assays (or gel retardation assays) are a standard way of assessing TF-binding. A fragment of DNA of interest is amplified and labeled with a fluorophore. The fragment is left to incubate in a solution containing abundant TF and non-specific DNA (e.g. randomly cleaved DNA from salmon sperm, of all things) and then a gel is run with the incubated sample and a control (sample that has not been in contact with the TF). If the TF has bound the sample, the complex will migrate more slowly than unbound DNA through the gel, and this retarded band can be used as evidence of binding. The unspecific DNA ensures that the binding is specific to the fragment of interest and that any non-specific DNA-binding proteins left-over in the TF purification will bind there, instead of on the fragment of interest. EMSAs are typically carried out in a bunch of fragments, shown as multiple double (control+experiment) lanes in a wide picture. Certain additional controls are run in at least one of the fragments to ascertain specificity. In the most basic of these, specific competitor (the fragment of interest or a known positive control, unlabelled) is added to the reaction. This should sequester the TF and hence make the retardation band disappear, proving that the binding is indeed specific
Quantitative Reverse-Transcription PCR is a modification of PCR in which RNA is first reverse transcribed into cDNA and this is amplified measuring the product (qPCR) in real time. It therefore allows one to analyze transcription by directly measuring the product (RNA) of a gene's transcription. If the gene is transcribed more, the starting product for PCR is larger and the corresponding volume of amplification is also larger.
This is a weak form of in-silico search, in which the consensus sequence for the motif is compared to genomic positions and the number of mismatches (between candidate site and consensus) is used as a measure of site-quality.
Electro-mobility shift-assays (or gel retardation assays) are a standard way of assessing TF-binding. A fragment of DNA of interest is amplified and labeled with a fluorophore. The fragment is left to incubate in a solution containing abundant TF and non-specific DNA (e.g. randomly cleaved DNA from salmon sperm, of all things) and then a gel is run with the incubated sample and a control (sample that has not been in contact with the TF). If the TF has bound the sample, the complex will migrate more slowly than unbound DNA through the gel, and this retarded band can be used as evidence of binding. The unspecific DNA ensures that the binding is specific to the fragment of interest and that any non-specific DNA-binding proteins left-over in the TF purification will bind there, instead of on the fragment of interest. EMSAs are typically carried out in a bunch of fragments, shown as multiple double (control+experiment) lanes in a wide picture. Certain additional controls are run in at least one of the fragments to ascertain specificity. In the most basic of these, specific competitor (the fragment of interest or a known positive control, unlabelled) is added to the reaction. This should sequester the TF and hence make the retardation band disappear, proving that the binding is indeed specific
Quantitative Reverse-Transcription PCR is a modification of PCR in which RNA is first reverse transcribed into cDNA and this is amplified measuring the product (qPCR) in real time. It therefore allows one to analyze transcription by directly measuring the product (RNA) of a gene's transcription. If the gene is transcribed more, the starting product for PCR is larger and the corresponding volume of amplification is also larger.
This is a weak form of in-silico search, in which the consensus sequence for the motif is compared to genomic positions and the number of mismatches (between candidate site and consensus) is used as a measure of site-quality.
Electro-mobility shift-assays (or gel retardation assays) are a standard way of assessing TF-binding. A fragment of DNA of interest is amplified and labeled with a fluorophore. The fragment is left to incubate in a solution containing abundant TF and non-specific DNA (e.g. randomly cleaved DNA from salmon sperm, of all things) and then a gel is run with the incubated sample and a control (sample that has not been in contact with the TF). If the TF has bound the sample, the complex will migrate more slowly than unbound DNA through the gel, and this retarded band can be used as evidence of binding. The unspecific DNA ensures that the binding is specific to the fragment of interest and that any non-specific DNA-binding proteins left-over in the TF purification will bind there, instead of on the fragment of interest. EMSAs are typically carried out in a bunch of fragments, shown as multiple double (control+experiment) lanes in a wide picture. Certain additional controls are run in at least one of the fragments to ascertain specificity. In the most basic of these, specific competitor (the fragment of interest or a known positive control, unlabelled) is added to the reaction. This should sequester the TF and hence make the retardation band disappear, proving that the binding is indeed specific
Quantitative Reverse-Transcription PCR is a modification of PCR in which RNA is first reverse transcribed into cDNA and this is amplified measuring the product (qPCR) in real time. It therefore allows one to analyze transcription by directly measuring the product (RNA) of a gene's transcription. If the gene is transcribed more, the starting product for PCR is larger and the corresponding volume of amplification is also larger.
This is a weak form of in-silico search, in which the consensus sequence for the motif is compared to genomic positions and the number of mismatches (between candidate site and consensus) is used as a measure of site-quality.
Electro-mobility shift-assays (or gel retardation assays) are a standard way of assessing TF-binding. A fragment of DNA of interest is amplified and labeled with a fluorophore. The fragment is left to incubate in a solution containing abundant TF and non-specific DNA (e.g. randomly cleaved DNA from salmon sperm, of all things) and then a gel is run with the incubated sample and a control (sample that has not been in contact with the TF). If the TF has bound the sample, the complex will migrate more slowly than unbound DNA through the gel, and this retarded band can be used as evidence of binding. The unspecific DNA ensures that the binding is specific to the fragment of interest and that any non-specific DNA-binding proteins left-over in the TF purification will bind there, instead of on the fragment of interest. EMSAs are typically carried out in a bunch of fragments, shown as multiple double (control+experiment) lanes in a wide picture. Certain additional controls are run in at least one of the fragments to ascertain specificity. In the most basic of these, specific competitor (the fragment of interest or a known positive control, unlabelled) is added to the reaction. This should sequester the TF and hence make the retardation band disappear, proving that the binding is indeed specific
MALDI-TOF mass spectrometry is used to determine the mass of larger compounds such as proteins. It is a frequently used method of establishing protein identity when constructing a proteome.
Quantitative Reverse-Transcription PCR is a modification of PCR in which RNA is first reverse transcribed into cDNA and this is amplified measuring the product (qPCR) in real time. It therefore allows one to analyze transcription by directly measuring the product (RNA) of a gene's transcription. If the gene is transcribed more, the starting product for PCR is larger and the corresponding volume of amplification is also larger.